forked from yinguobing/image_utility
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblur_detector.py
99 lines (84 loc) · 3.53 KB
/
blur_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""A demonstration code of image blurness detection. The algorithm is from the
technical paper:
Marichal, Xavier & Ma, Wei-Ying & Zhang, HongJiang. (1999). Blur determination
in the compressed domain using DCT information. IEEE International Conference on
Image Processing. 2. 386 - 390 vol.2. 10.1109/ICIP.1999.822923.
"""
import cv2
import numpy as np
class BlurDetector(object):
def __init__(self):
"""Initialize a DCT based blur detector"""
self.dct_threshold = 8.0
self.max_hist = 0.1
self.hist_weight = np.array([8, 7, 6, 5, 4, 3, 2, 1,
7, 8, 7, 6, 5, 4, 3, 2,
6, 7, 8, 7, 6, 5, 4, 3,
5, 6, 7, 8, 7, 6, 5, 4,
4, 5, 6, 7, 8, 7, 6, 5,
3, 4, 5, 6, 7, 8, 7, 6,
2, 3, 4, 5, 6, 7, 8, 7,
1, 2, 3, 4, 5, 6, 7, 8
]).reshape(8, 8)
self.weight_total = 344.0
def check_image_size(self, image, block_size=8):
"""Make sure the image size is valid.
Args:
image: input image as a numpy array.
block_size: the size of the minimal DCT block.
Returns:
result: boolean value indicating whether the image is valid.
image: a modified valid image.
"""
result = True
height, width = image.shape[:2]
_y = height % block_size
_x = width % block_size
pad_x = pad_y = 0
if _y != 0:
pad_y = block_size - _y
result = False
if _x != 0:
pad_x = block_size - _x
result = False
image = cv2.copyMakeBorder(
image, 0, pad_y, 0, pad_x, cv2.BORDER_REPLICATE)
return result, image
def get_blurness(self, image, block_size=8):
"""Estimate the blurness of an image.
Args:
image: image as a numpy array of shape [height, width, channels].
block_size: the size of the minimal DCT block size.
Returns:
a float value represents the blurness.
"""
# A 2D histogram.
hist = np.zeros((8, 8), dtype=int)
# Only the illumination is considered in blur.
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Split the image into patches and do DCT on the image patch.
height, width = image.shape
round_v = int(height / block_size)
round_h = int(width / block_size)
for v in range(round_v):
for h in range(round_h):
v_start = v * block_size
v_end = v_start + block_size
h_start = h * block_size
h_end = h_start + block_size
image_patch = image[v_start:v_end, h_start:h_end]
image_patch = np.float32(image_patch)
patch_spectrum = cv2.dct(image_patch)
patch_none_zero = np.abs(patch_spectrum) > self.dct_threshold
hist += patch_none_zero.astype(int)
_blur = hist < self.max_hist * hist[0, 0]
_blur = (np.multiply(_blur.astype(int), self.hist_weight)).sum()
return _blur/self.weight_total
if __name__ == "__main__":
bd = BlurDetector()
image = cv2.imread('/home/robin/Desktop/face.jpg')
result, image = bd.check_image_size(image)
if not result:
print("Image expanded.")
blur = bd.get_blurness(image)
print("Blurness: {:.2f}".format(blur))