-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathregistration_utilities.py
241 lines (208 loc) · 10.5 KB
/
registration_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import SimpleITK as sitk
def load_RIRE_ground_truth(file_name):
"""
Load the point sets defining the ground truth transformations for the RIRE
training dataset.
Args:
file_name (str): RIRE ground truth file name. File format is specific to
the RIRE training data, with the actual data expectd to
be in lines 15-23.
Returns:
Two lists of tuples representing the points in the "left" and "right"
coordinate systems.
"""
with open(file_name, 'r') as fp:
lines = fp.readlines()
l = []
r = []
# Fiducial information is in lines 15-22, starting with the second entry.
for line in lines[15:23]:
coordinates = line.split()
l.append((float(coordinates[1]), float(coordinates[2]), float(coordinates[3])))
r.append((float(coordinates[4]), float(coordinates[5]), float(coordinates[6])))
return (l, r)
def absolute_orientation_m(points_in_left, points_in_right):
"""
Absolute orientation using a matrix to represent the rotation. Solution is
due to S. Umeyama, "Least-Squares Estimation of Transformation Parameters
Between Two Point Patterns", IEEE Trans. Pattern Anal. Machine Intell.,
vol. 13(4): 376-380.
This is a refinement of the method proposed by Arun, Huang and Blostein,
ensuring that the rotation matrix is indeed a rotation and not a reflection.
Args:
points_in_left (list(tuple)): Set of points corresponding to
points_in_right in a different coordinate system.
points_in_right (list(tuple)): Set of points corresponding to
points_in_left in a different coordinate system.
Returns:
R,t (numpy.ndarray, numpy.array): Rigid transformation that maps points_in_left
onto points_in_right.
R*points_in_left + t = points_in_right
"""
num_points = len(points_in_left)
dim_points = len(points_in_left[0])
# Cursory check that the number of points is sufficient.
if num_points<dim_points:
raise ValueError('Number of points must be greater/equal {0}.'.format(dim_points))
# Construct matrices out of the two point sets for easy manipulation.
left_mat = np.array(points_in_left).T
right_mat = np.array(points_in_right).T
# Center both data sets on the mean.
left_mean = left_mat.mean(1)
right_mean = right_mat.mean(1)
left_M = left_mat - np.tile(left_mean, (num_points, 1)).T
right_M = right_mat - np.tile(right_mean, (num_points, 1)).T
M = left_M.dot(right_M.T)
U,S,Vt = linalg.svd(M)
V=Vt.T
# V * diag(1,1,det(U*V)) * U' - diagonal matrix ensures that we have a
# rotation and not a reflection.
R = V.dot(np.diag((1,1,linalg.det(U.dot(V))))).dot(U.T)
t = right_mean - R.dot(left_mean)
return R,t
def generate_random_pointset(image, num_points):
"""
Generate a random set (uniform sample) of points in the given image's domain.
Args:
image (SimpleITK.Image): Domain in which points are created.
num_points (int): Number of points to generate.
Returns:
A list of points (tuples).
"""
# Continous random uniform point indexes inside the image bounds.
point_indexes = np.multiply(np.tile(image.GetSize(), (num_points, 1)),
np.random.random((num_points, image.GetDimension())))
pointset_list = point_indexes.tolist()
# Get the list of physical points corresponding to the indexes.
return [image.TransformContinuousIndexToPhysicalPoint(point_index) \
for point_index in pointset_list]
def registration_errors(tx, reference_fixed_point_list, reference_moving_point_list,
display_errors = False, min_err= None, max_err=None, figure_size=(8,6)):
"""
Distances between points transformed by the given transformation and their
location in another coordinate system. When the points are only used to
evaluate registration accuracy (not used in the registration) this is the
Target Registration Error (TRE).
Args:
tx (SimpleITK.Transform): The transform we want to evaluate.
reference_fixed_point_list (list(tuple-like)): Points in fixed image
cooredinate system.
reference_moving_point_list (list(tuple-like)): Points in moving image
cooredinate system.
display_errors (boolean): Display a 3D figure with the points from
reference_fixed_point_list color corresponding
to the error.
min_err, max_err (float): color range is linearly stretched between min_err
and max_err. If these values are not given then
the range of errors computed from the data is used.
figure_size (tuple): Figure size in inches.
Returns:
(mean, std, min, max, errors) (float, float, float, float, [float]):
TRE statistics and original TREs.
"""
transformed_fixed_point_list = [tx.TransformPoint(p) for p in reference_fixed_point_list]
errors = [linalg.norm(np.array(p_fixed) - np.array(p_moving))
for p_fixed,p_moving in zip(transformed_fixed_point_list, reference_moving_point_list)]
min_errors = np.min(errors)
max_errors = np.max(errors)
if display_errors:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib
fig = plt.figure(figsize=figure_size)
ax = fig.add_subplot(111, projection='3d')
if not min_err:
min_err = min_errors
if not max_err:
max_err = max_errors
collection = ax.scatter(list(np.array(reference_fixed_point_list).T)[0],
list(np.array(reference_fixed_point_list).T)[1],
list(np.array(reference_fixed_point_list).T)[2],
marker = 'o',
c = errors,
vmin = min_err,
vmax = max_err,
cmap = matplotlib.cm.hot,
label = 'fixed points')
plt.colorbar(collection, shrink=0.8)
plt.title('registration errors in mm', x=0.7, y=1.05)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
return (np.mean(errors), np.std(errors), min_errors, max_errors, errors)
def display_scalar_images(image1_z_index, image2_z_index, image1, image2,
min_max_image1= (), min_max_image2 = (), title1="", title2="", figure_size=(10,8)):
"""
Display a plot with two slices from 3D images. Display of the specific z slices is side by side.
Note: When using this function as a callback for interact in IPython notebooks it is recommended to
provide the min_max_image1 and min_max_image2 variables for intensity scaling. Otherwise we
compute them internally every time this function is invoked (scrolling events).
Args:
image1_z_index (int): index of the slice we display for the first image.
image2_z_index (int): index of the slice we display for the second image.
image1 (SimpleITK.Image): first image.
image2 (SimpleITK.Image): second image.
min_max_image1 (Tuple(float, float)): image intensity values are linearly scaled to be in the given range. if
the range is not provided by the caller, then we use the image's minimum
and maximum intensities.
min_max_image2 (Tuple(float, float)): image intensity values are linearly scaled to be in the given range. if
the range is not provided by the caller, then we use the image's minimum
and maximum intensities.
title1 (string): title for first image plot.
title2 (string): title for second image plot.
figure_size (Tuple(float,float)): width and height of figure in inches.
"""
intensity_statistics_filter = sitk.StatisticsImageFilter()
if min_max_image1:
vmin1 = min(min_max_image1)
vmax1 = max(min_max_image1)
else:
intensity_statistics_filter.Execute(image1)
vmin1 = intensity_statistics_filter.GetMinimum()
vmax1 = intensity_statistics_filter.GetMaximum()
if min_max_image2:
vmin2 = min(min_max_image2)
vmax2 = max(min_max_image2)
else:
intensity_statistics_filter.Execute(image2)
vmin2 = intensity_statistics_filter.GetMinimum()
vmax2 = intensity_statistics_filter.GetMaximum()
plt.subplots(1,2,figsize=figure_size)
plt.subplot(1,2,1)
plt.imshow(sitk.GetArrayFromImage(image1[:,:,image1_z_index]),cmap=plt.cm.Greys_r, vmin=vmin1, vmax=vmax1)
plt.title(title1)
plt.axis('off')
plt.subplot(1,2,2)
plt.imshow(sitk.GetArrayFromImage(image2[:,:,image2_z_index]),cmap=plt.cm.Greys_r, vmin=vmin2, vmax=vmax2)
plt.title(title2)
plt.axis('off')
plt.show()
def display_images_with_alpha(image_z, alpha, image1, image2):
"""
Display a plot with a slice from the 3D images that is alpha blended.
It is assumed that the two images have the same physical charecteristics (origin,
spacing, direction, size), if they do not, an exception is thrown.
"""
img = (1.0 - alpha)*image1[:,:,image_z] + alpha*image2[:,:,image_z]
plt.imshow(sitk.GetArrayFromImage(img),cmap=plt.cm.Greys_r);
plt.axis('off')
plt.show()
#callback invoked by the interact ipython method for scrolling through the image stacks of
#the two images (moving and fixed)
def display_images(fixed_image_z, moving_image_z, fixed_npa, moving_npa):
#create a figure with two subplots and the specified size
plt.subplots(1,2,figsize=(10,8))
#draw the fixed image in the first subplot
plt.subplot(1,2,1)
plt.imshow(fixed_npa[fixed_image_z,:,:],cmap=plt.cm.Greys_r);
plt.title('fixed image')
plt.axis('off')
#draw the moving image in the second subplot
plt.subplot(1,2,2)
plt.imshow(moving_npa[moving_image_z,:,:],cmap=plt.cm.Greys_r);
plt.title('moving image')
plt.axis('off')