-
Notifications
You must be signed in to change notification settings - Fork 520
/
Copy pathfull.py
269 lines (208 loc) · 8.48 KB
/
full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
Instruction-tuning on the Alpaca dataset using a regular finetuning procedure (updating all layers).
Note: If you run into a CUDA error "Expected is_sm80 to be true, but got false", uncomment the line
`torch.backends.cuda.enable_flash_sdp(False)` in the script below (see https://github.com/Lightning-AI/lit-llama/issues/101).
"""
import sys
from pathlib import Path
import os
import time
from functools import partial
import lightning as L
from lightning.fabric.strategies import FSDPStrategy
import numpy as np
import torch
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from generate import generate
from lit_llama.model import Block, LLaMA, LLaMAConfig
from lit_llama.tokenizer import Tokenizer
from lit_llama.utils import save_model_checkpoint
from scripts.prepare_alpaca import generate_prompt
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset, DataLoader
instruction_tuning = True
eval_interval = 1000
save_interval = 1000
eval_iters = 100
log_interval = 100
devices = 4
# Hyperparameters
learning_rate = 3e-5
batch_size = 128 / devices
micro_batch_size = 4
gradient_accumulation_iters = batch_size // micro_batch_size
assert gradient_accumulation_iters > 0
epoch_size = 50000 # train dataset size
num_epochs = 5
max_iters = num_epochs * (epoch_size // micro_batch_size) // devices
weight_decay = 0.0
block_size = 512
warmup_iters = 100
def main(
data_dir: str = "data/alpaca",
pretrained_path: str = "checkpoints/lit-llama/7B/lit-llama.pth",
out_dir: str = "out/full/alpaca",
):
auto_wrap_policy = partial(transformer_auto_wrap_policy, transformer_layer_cls={Block})
strategy = FSDPStrategy(auto_wrap_policy=auto_wrap_policy, activation_checkpointing=Block)
fabric = L.Fabric(accelerator="cuda", devices=devices, precision="bf16-mixed", strategy=strategy)
fabric.launch()
fabric.seed_everything(1337 + fabric.global_rank)
if fabric.global_rank == 0:
os.makedirs(out_dir, exist_ok=True)
train_data, val_data = load_datasets(data_dir=data_dir)
config = LLaMAConfig.from_name("7B")
config.block_size = block_size
checkpoint = torch.load(pretrained_path)
with fabric.device:
torch.set_default_tensor_type(torch.HalfTensor)
model = LLaMA(config).bfloat16()
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
model = fabric.setup_module(model)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
optimizer = fabric.setup_optimizers(optimizer)
train(fabric, model, optimizer, train_data, val_data, out_dir)
# Save the final checkpoint at the end of training
save_model_checkpoint(fabric, model, os.path.join(out_dir, "lit-llama-full-finetuned.pth"))
def train(
fabric: L.Fabric,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
train_data: np.ndarray,
val_data: np.ndarray,
out_dir: str,
group_by_length: bool = False,
) -> None:
"""The training loop.
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
step_count = 0
model.train()
loader = get_dataloader(fabric, train_data, micro_batch_size, group_by_length)
for iter_num, (input_ids, targets) in enumerate(loader):
if iter_num >= max_iters:
break
is_accumulating = (iter_num + 1) % gradient_accumulation_iters != 0
if step_count <= warmup_iters:
# linear warmup
lr = learning_rate * step_count / warmup_iters
for param_group in optimizer.param_groups:
param_group['lr'] = lr
t0 = time.time()
input_ids, targets = get_batch(fabric, train_data)
with fabric.no_backward_sync(model, enabled=is_accumulating):
logits = model(input_ids)
loss = loss_fn(logits, targets)
fabric.backward(loss / gradient_accumulation_iters)
if not is_accumulating:
optimizer.step()
optimizer.zero_grad()
step_count += 1
if step_count % eval_interval == 0:
val_loss = validate(fabric, model, val_data)
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
fabric.barrier()
if step_count % save_interval == 0:
print(f"Saving weights to {out_dir}")
save_model_checkpoint(fabric, model, os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth"))
dt = time.time() - t0
if iter_num % log_interval == 0:
fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")
def generate_response(model, instruction):
tokenizer = Tokenizer("checkpoints/lit-llama/tokenizer.model")
sample = {"instruction": instruction, "input": ""}
prompt = instruction
if instruction_tuning:
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)
output = generate(
model,
idx=encoded,
max_seq_length=block_size,
max_new_tokens=100,
)
output = tokenizer.decode(output)
return output # output.split("### Response:")[1].strip()
@torch.no_grad()
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
fabric.print("Validating ...")
model.eval()
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
input_ids, targets = get_batch(fabric, val_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
losses[k] = loss.item()
out = losses.mean()
# produce an example:
instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
output = generate_response(model, instruction)
fabric.print(instruction)
fabric.print(output)
model.train()
return out.item()
def loss_fn(logits, targets):
# shift the targets such that output n predicts token n+1
logits = logits[..., :-1, :].contiguous()
targets = targets[..., 1:].contiguous()
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return loss
def get_batch(fabric: L.Fabric, data: list):
ix = torch.randint(len(data), (micro_batch_size,))
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
labels = [data[i]["labels"].type(torch.int64) for i in ix]
max_len = max(len(s) for s in input_ids)
def pad_right(x, pad_id):
# pad right based on the longest sequence
n = max_len - len(x)
return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))
x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
return x, y
class InstructionDataset(Dataset):
def __init__(self, data: list):
self._data = data
def __len__(self):
return len(self._data)
def __getitem__(self, i: int):
input_ids = self._data[i]["input_ids"].type(torch.int64)
labels = self._data[i]["labels"].type(torch.int64)
return input_ids, labels
def get_dataloader(
fabric: L.Fabric,
data: torch.Tensor,
micro_batch_size: int,
group_by_length: bool,
):
from length_grouped_sampler import LengthGroupedSampler
def collate_fn(batch):
x, y = zip(*batch)
batch_x = pad_sequence(x, batch_first=True)
batch_y = pad_sequence(y, batch_first=True, padding_value=-1)
return batch_x, batch_y
dataset = InstructionDataset(data)
sampler = LengthGroupedSampler(micro_batch_size, lengths=[len(x) for x, _ in dataset]) if group_by_length else None
loader = DataLoader(
dataset,
batch_size=micro_batch_size,
shuffle=(sampler is None),
sampler=sampler,
collate_fn=collate_fn,
pin_memory=True,
)
return fabric.setup_dataloaders(loader)
def load_datasets(data_dir):
train_data = torch.load(os.path.join(data_dir, "train.pt"))
val_data = torch.load(os.path.join(data_dir, "test.pt"))
return train_data, val_data
if __name__ == "__main__":
# Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
# torch.backends.cuda.enable_flash_sdp(False)
torch.set_float32_matmul_precision("high")
from jsonargparse.cli import CLI
CLI(main)