-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathmlflow.py
403 lines (321 loc) · 14.8 KB
/
mlflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MLflow Logger
-------------
"""
import logging
import os
import re
import tempfile
from argparse import Namespace
from collections.abc import Mapping
from pathlib import Path
from time import time
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union
import yaml
from lightning_utilities.core.imports import RequirementCache
from torch import Tensor
from typing_extensions import override
from lightning.fabric.utilities.logger import _add_prefix, _convert_params, _flatten_dict
from lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint
from lightning.pytorch.loggers.logger import Logger, rank_zero_experiment
from lightning.pytorch.loggers.utilities import _scan_checkpoints
from lightning.pytorch.utilities.rank_zero import rank_zero_only, rank_zero_warn
if TYPE_CHECKING:
from mlflow.tracking import MlflowClient
log = logging.getLogger(__name__)
LOCAL_FILE_URI_PREFIX = "file:"
_MLFLOW_AVAILABLE = RequirementCache("mlflow>=1.0.0", "mlflow")
_MLFLOW_SYNCHRONOUS_AVAILABLE = RequirementCache("mlflow>=2.8.0", "mlflow")
class MLFlowLogger(Logger):
"""Log using `MLflow <https://mlflow.org>`_.
Install it with pip:
.. code-block:: bash
pip install mlflow # or mlflow-skinny
.. code-block:: python
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(experiment_name="lightning_logs", tracking_uri="file:./ml-runs")
trainer = Trainer(logger=mlf_logger)
Use the logger anywhere in your :class:`~lightning.pytorch.core.LightningModule` as follows:
.. code-block:: python
from lightning.pytorch import LightningModule
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# example
self.logger.experiment.whatever_ml_flow_supports(...)
def any_lightning_module_function_or_hook(self):
self.logger.experiment.whatever_ml_flow_supports(...)
Args:
experiment_name: The name of the experiment.
run_name: Name of the new run. The `run_name` is internally stored as a ``mlflow.runName`` tag.
If the ``mlflow.runName`` tag has already been set in `tags`, the value is overridden by the `run_name`.
tracking_uri: Address of local or remote tracking server.
If not provided, defaults to `MLFLOW_TRACKING_URI` environment variable if set, otherwise it falls
back to `file:<save_dir>`.
tags: A dictionary tags for the experiment.
save_dir: A path to a local directory where the MLflow runs get saved.
Defaults to `./mlruns` if `tracking_uri` is not provided.
Has no effect if `tracking_uri` is provided.
log_model: Log checkpoints created by :class:`~lightning.pytorch.callbacks.model_checkpoint.ModelCheckpoint`
as MLFlow artifacts.
* if ``log_model == 'all'``, checkpoints are logged during training.
* if ``log_model == True``, checkpoints are logged at the end of training, except when
:paramref:`~lightning.pytorch.callbacks.Checkpoint.save_top_k` ``== -1``
which also logs every checkpoint during training.
* if ``log_model == False`` (default), no checkpoint is logged.
prefix: A string to put at the beginning of metric keys.
artifact_location: The location to store run artifacts. If not provided, the server picks an appropriate
default.
run_id: The run identifier of the experiment. If not provided, a new run is started.
synchronous: Hints mlflow whether to block the execution for every logging call until complete where
applicable. Requires mlflow >= 2.8.0
Raises:
ModuleNotFoundError:
If required MLFlow package is not installed on the device.
"""
LOGGER_JOIN_CHAR = "-"
def __init__(
self,
experiment_name: str = "lightning_logs",
run_name: Optional[str] = None,
tracking_uri: Optional[str] = os.getenv("MLFLOW_TRACKING_URI"),
tags: Optional[dict[str, Any]] = None,
save_dir: Optional[str] = "./mlruns",
log_model: Literal[True, False, "all"] = False,
prefix: str = "",
artifact_location: Optional[str] = None,
run_id: Optional[str] = None,
synchronous: Optional[bool] = None,
):
if not _MLFLOW_AVAILABLE:
raise ModuleNotFoundError(str(_MLFLOW_AVAILABLE))
if synchronous is not None and not _MLFLOW_SYNCHRONOUS_AVAILABLE:
raise ModuleNotFoundError("`synchronous` requires mlflow>=2.8.0")
super().__init__()
if not tracking_uri:
tracking_uri = f"{LOCAL_FILE_URI_PREFIX}{save_dir}"
self._experiment_name = experiment_name
self._experiment_id: Optional[str] = None
self._tracking_uri = tracking_uri
self._run_name = run_name
self._run_id = run_id
self.tags = tags
self._log_model = log_model
self._logged_model_time: dict[str, float] = {}
self._checkpoint_callbacks: Optional[list[ModelCheckpoint]] = []
self._prefix = prefix
self._artifact_location = artifact_location
self._log_batch_kwargs = {} if synchronous is None else {"synchronous": synchronous}
self._initialized = False
from mlflow.tracking import MlflowClient
self._mlflow_client = MlflowClient(tracking_uri)
@property
@rank_zero_experiment
def experiment(self) -> "MlflowClient":
r"""Actual MLflow object. To use MLflow features in your :class:`~lightning.pytorch.core.LightningModule` do the
following.
Example::
self.logger.experiment.some_mlflow_function()
"""
import mlflow
if self._initialized:
return self._mlflow_client
mlflow.set_tracking_uri(self._tracking_uri)
if self._run_id is not None:
run = self._mlflow_client.get_run(self._run_id)
self._experiment_id = run.info.experiment_id
self._initialized = True
return self._mlflow_client
if self._experiment_id is None:
expt = self._mlflow_client.get_experiment_by_name(self._experiment_name)
if expt is not None:
self._experiment_id = expt.experiment_id
else:
log.warning(f"Experiment with name {self._experiment_name} not found. Creating it.")
self._experiment_id = self._mlflow_client.create_experiment(
name=self._experiment_name, artifact_location=self._artifact_location
)
if self._run_id is None:
if self._run_name is not None:
self.tags = self.tags or {}
from mlflow.utils.mlflow_tags import MLFLOW_RUN_NAME
if MLFLOW_RUN_NAME in self.tags:
log.warning(
f"The tag {MLFLOW_RUN_NAME} is found in tags. The value will be overridden by {self._run_name}."
)
self.tags[MLFLOW_RUN_NAME] = self._run_name
resolve_tags = _get_resolve_tags()
run = self._mlflow_client.create_run(experiment_id=self._experiment_id, tags=resolve_tags(self.tags))
self._run_id = run.info.run_id
self._initialized = True
return self._mlflow_client
@property
def run_id(self) -> Optional[str]:
"""Create the experiment if it does not exist to get the run id.
Returns:
The run id.
"""
_ = self.experiment
return self._run_id
@property
def experiment_id(self) -> Optional[str]:
"""Create the experiment if it does not exist to get the experiment id.
Returns:
The experiment id.
"""
_ = self.experiment
return self._experiment_id
@override
@rank_zero_only
def log_hyperparams(self, params: Union[dict[str, Any], Namespace]) -> None:
params = _convert_params(params)
params = _flatten_dict(params)
from mlflow.entities import Param
# Truncate parameter values to 250 characters.
# TODO: MLflow 1.28 allows up to 500 characters: https://github.com/mlflow/mlflow/releases/tag/v1.28.0
params_list = [Param(key=k, value=str(v)[:250]) for k, v in params.items()]
# Log in chunks of 100 parameters (the maximum allowed by MLflow).
for idx in range(0, len(params_list), 100):
self.experiment.log_batch(run_id=self.run_id, params=params_list[idx : idx + 100], **self._log_batch_kwargs)
@override
@rank_zero_only
def log_metrics(self, metrics: Mapping[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
from mlflow.entities import Metric
metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)
metrics_list: list[Metric] = []
timestamp_ms = int(time() * 1000)
for k, v in metrics.items():
if isinstance(v, str):
log.warning(f"Discarding metric with string value {k}={v}.")
continue
new_k = re.sub("[^a-zA-Z0-9_/. -]+", "", k)
if k != new_k:
rank_zero_warn(
"MLFlow only allows '_', '/', '.' and ' ' special characters in metric name."
f" Replacing {k} with {new_k}.",
category=RuntimeWarning,
)
k = new_k
metrics_list.append(Metric(key=k, value=v, timestamp=timestamp_ms, step=step or 0))
self.experiment.log_batch(run_id=self.run_id, metrics=metrics_list, **self._log_batch_kwargs)
@override
@rank_zero_only
def finalize(self, status: str = "success") -> None:
if not self._initialized:
return
if status == "success":
status = "FINISHED"
elif status == "failed":
status = "FAILED"
elif status == "finished":
status = "FINISHED"
# log checkpoints as artifacts
if self._checkpoint_callbacks:
for callback in self._checkpoint_callbacks:
self._scan_and_log_checkpoints(callback)
if self.experiment.get_run(self.run_id):
self.experiment.set_terminated(self.run_id, status)
@property
@override
def save_dir(self) -> Optional[str]:
"""The root file directory in which MLflow experiments are saved.
Return:
Local path to the root experiment directory if the tracking uri is local.
Otherwise returns `None`.
"""
if self._tracking_uri.startswith(LOCAL_FILE_URI_PREFIX):
return self._tracking_uri[len(LOCAL_FILE_URI_PREFIX) :]
return None
@property
@override
def name(self) -> Optional[str]:
"""Get the experiment id.
Returns:
The experiment id.
"""
return self.experiment_id
@property
@override
def version(self) -> Optional[str]:
"""Get the run id.
Returns:
The run id.
"""
return self.run_id
@override
def after_save_checkpoint(self, checkpoint_callback: ModelCheckpoint) -> None:
# log checkpoints as artifacts
if self._log_model == "all" or self._log_model is True and checkpoint_callback.save_top_k == -1:
self._scan_and_log_checkpoints(checkpoint_callback)
elif (
self._log_model is True
and self._checkpoint_callbacks
and checkpoint_callback not in self._checkpoint_callbacks
):
self._checkpoint_callbacks.append(checkpoint_callback)
def _scan_and_log_checkpoints(self, checkpoint_callback: ModelCheckpoint) -> None:
# get checkpoints to be saved with associated score
checkpoints = _scan_checkpoints(checkpoint_callback, self._logged_model_time)
# log iteratively all new checkpoints
for t, p, s, tag in checkpoints:
metadata = {
# Ensure .item() is called to store Tensor contents
"score": s.item() if isinstance(s, Tensor) else s,
"original_filename": Path(p).name,
"Checkpoint": {
k: getattr(checkpoint_callback, k)
for k in [
"monitor",
"mode",
"save_last",
"save_top_k",
"save_weights_only",
"_every_n_train_steps",
"_every_n_val_epochs",
]
# ensure it does not break if `Checkpoint` args change
if hasattr(checkpoint_callback, k)
},
}
aliases = ["latest", "best"] if p == checkpoint_callback.best_model_path else ["latest"]
# Artifact path on mlflow
artifact_path = Path(p).stem
# Log the checkpoint
self.experiment.log_artifact(self._run_id, p, artifact_path)
# Create a temporary directory to log on mlflow
with tempfile.TemporaryDirectory(prefix="test", suffix="test", dir=os.getcwd()) as tmp_dir:
# Log the metadata
with open(f"{tmp_dir}/metadata.yaml", "w") as tmp_file_metadata:
yaml.dump(metadata, tmp_file_metadata, default_flow_style=False)
# Log the aliases
with open(f"{tmp_dir}/aliases.txt", "w") as tmp_file_aliases:
tmp_file_aliases.write(str(aliases))
# Log the metadata and aliases
self.experiment.log_artifacts(self._run_id, tmp_dir, artifact_path)
# remember logged models - timestamp needed in case filename didn't change (lastkckpt or custom name)
self._logged_model_time[p] = t
def _get_resolve_tags() -> Callable:
from mlflow.tracking import context
# before v1.1.0
if hasattr(context, "resolve_tags"):
from mlflow.tracking.context import resolve_tags
# since v1.1.0
elif hasattr(context, "registry"):
from mlflow.tracking.context.registry import resolve_tags
else:
resolve_tags = lambda tags: tags
return resolve_tags