You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"Lattice creation is done using a wrapper class which contains the Cheetah `Segment` for tracking, the cheetah `Screen` elements to observe the beam, and additional GPSR functionalities:"
2501
2494
]
2502
2495
},
@@ -2616,7 +2609,9 @@
2616
2609
}
2617
2610
},
2618
2611
"source": [
2619
-
"GPSR model contains the beam NN generator and differentiable cheetah tracking lattice:"
2612
+
"### GPSR Model \n",
2613
+
"\n",
2614
+
"contains the beam NN generator and differentiable cheetah tracking lattice:"
2620
2615
]
2621
2616
},
2622
2617
{
@@ -2642,7 +2637,8 @@
2642
2637
"source": [
2643
2638
"Due to the full PyTorch implementation, GPSR can make use of:\n",
2644
2639
"- PyTorch `DataLoader`\n",
2645
-
"- PyTorch Lightining, a package that provides a high level interface to train PyTorch models."
2640
+
"- PyTorch Lightining, a package that provides a high level interface to train PyTorch models.\n",
2641
+
"- GPU hardware acceleration (if available)"
2646
2642
]
2647
2643
},
2648
2644
{
@@ -2678,7 +2674,7 @@
2678
2674
}
2679
2675
},
2680
2676
"source": [
2681
-
"Lightning selects a GPU (if available), and does the training of the GPSR model:"
2677
+
"### Training"
2682
2678
]
2683
2679
},
2684
2680
{
@@ -2743,7 +2739,9 @@
2743
2739
}
2744
2740
},
2745
2741
"source": [
2746
-
"We can look at the results by looking at the predicted and measured screen images for the scan parameters"
2742
+
"### Results\n",
2743
+
"\n",
2744
+
"Predicted and measured screen images for the scan parameters"
2747
2745
]
2748
2746
},
2749
2747
{
@@ -2786,7 +2784,9 @@
2786
2784
}
2787
2785
},
2788
2786
"source": [
2789
-
"Cheetah has a useful plotting routines to see the 2D projections of the 6D beam distributions:"
2787
+
"### Results\n",
2788
+
"\n",
2789
+
"2D projections of the reconstructied 6D phase space distributions:"
<p>Diagnostics for generative phase space reconstruction (GPSR)</p>
9824
-
<p><img alt="No description has been provided for this image" src="fig/gpsr_scan.png" style="width:90%; margin:auto;"/></p>
9823
+
<h3 id="Diagnostics-for-generative-phase-space-reconstruction-(GPSR)">Diagnostics for generative phase space reconstruction (GPSR)<a class="anchor-link" href="#Diagnostics-for-generative-phase-space-reconstruction-(GPSR)">¶</a></h3><p><img alt="No description has been provided for this image" src="fig/gpsr_scan.png" style="width:90%; margin:auto;"/></p>
<p>The dataset is a custom PyTorch <code>Dataset</code>:</p>
9872
+
<h3 id="Let's-inspect-the-GPSR-dataset.">Let's inspect the GPSR dataset.<a class="anchor-link" href="#Let's-inspect-the-GPSR-dataset.">¶</a></h3><p>The dataset is a custom PyTorch <code>Dataset</code>:</p>
<p>Lattice creation is done using a wrapper class which contains the Cheetah <code>Segment</code> for tracking, the cheetah <code>Screen</code> elements to observe the beam, and additional GPSR functionalities:</p>
10041
+
<h3 id="GPSR-Diagnostics-Lattice">GPSR Diagnostics Lattice<a class="anchor-link" href="#GPSR-Diagnostics-Lattice">¶</a></h3><p>Lattice creation is done using a wrapper class which contains the Cheetah <code>Segment</code> for tracking, the cheetah <code>Screen</code> elements to observe the beam, and additional GPSR functionalities:</p>
<p>GPSR model contains the beam NN generator and differentiable cheetah tracking lattice:</p>
10173
+
<h3 id="GPSR-Model">GPSR Model<a class="anchor-link" href="#GPSR-Model">¶</a></h3><p>contains the beam NN generator and differentiable cheetah tracking lattice:</p>
0 commit comments