Skip to content

Commit e30a378

Browse files
committed
enable scrolling and cosmetic changes
1 parent e84c7fa commit e30a378

File tree

2 files changed

+43
-75
lines changed

2 files changed

+43
-75
lines changed

tutorial.ipynb

Lines changed: 25 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -2292,7 +2292,7 @@
22922292
}
22932293
},
22942294
"source": [
2295-
"Diagnostics for generative phase space reconstruction (GPSR)\n",
2295+
"### Diagnostics for generative phase space reconstruction (GPSR)\n",
22962296
"\n",
22972297
"<img src=\"fig/gpsr_scan.png\" style=\"width:90%; margin:auto;\"/>"
22982298
]
@@ -2305,7 +2305,7 @@
23052305
}
23062306
},
23072307
"source": [
2308-
"Load example GPSR dataset"
2308+
"### Example GPSR Dataset"
23092309
]
23102310
},
23112311
{
@@ -2333,15 +2333,6 @@
23332333
"obs_dataset.plot_data(publication_size=True);"
23342334
]
23352335
},
2336-
{
2337-
"cell_type": "markdown",
2338-
"metadata": {
2339-
"slideshow": {
2340-
"slide_type": "fragment"
2341-
}
2342-
},
2343-
"source": []
2344-
},
23452336
{
23462337
"cell_type": "markdown",
23472338
"metadata": {
@@ -2350,14 +2341,14 @@
23502341
}
23512342
},
23522343
"source": [
2353-
"Let's inspect the GPSR dataset.\n",
2344+
"### Let's inspect the GPSR dataset.\n",
23542345
"\n",
23552346
"The dataset is a custom PyTorch `Dataset`:"
23562347
]
23572348
},
23582349
{
23592350
"cell_type": "code",
2360-
"execution_count": 38,
2351+
"execution_count": 50,
23612352
"metadata": {
23622353
"slideshow": {
23632354
"slide_type": "fragment"
@@ -2368,14 +2359,14 @@
23682359
"name": "stdout",
23692360
"output_type": "stream",
23702361
"text": [
2371-
"gpsr dataset class: <class 'gpsr.datasets.SixDReconstructionDataset'>\n",
2372-
"gpsr dataset parent class: <class 'torch.utils.data.dataset.Dataset'>\n"
2362+
"<class 'gpsr.datasets.SixDReconstructionDataset'>\n",
2363+
"<class 'torch.utils.data.dataset.Dataset'>\n"
23732364
]
23742365
}
23752366
],
23762367
"source": [
2377-
"print(f'gpsr dataset class: {obs_dataset.__class__}')\n",
2378-
"print(f'gpsr dataset parent class: {obs_dataset.__class__.__bases__[0].__bases__[0]}')"
2368+
"print(obs_dataset.__class__)\n",
2369+
"print(obs_dataset.__class__.__bases__[0].__bases__[0])"
23792370
]
23802371
},
23812372
{
@@ -2391,7 +2382,7 @@
23912382
},
23922383
{
23932384
"cell_type": "code",
2394-
"execution_count": 39,
2385+
"execution_count": 51,
23952386
"metadata": {
23962387
"slideshow": {
23972388
"slide_type": "fragment"
@@ -2402,12 +2393,12 @@
24022393
"name": "stdout",
24032394
"output_type": "stream",
24042395
"text": [
2405-
"dataset parameters shape: torch.Size([2, 2, 5, 3])\n"
2396+
"torch.Size([2, 2, 5, 3])\n"
24062397
]
24072398
}
24082399
],
24092400
"source": [
2410-
"print(f'dataset parameters shape: {obs_dataset.six_d_params.shape}')"
2401+
"print(obs_dataset.six_d_params.shape)"
24112402
]
24122403
},
24132404
{
@@ -2497,6 +2488,8 @@
24972488
}
24982489
},
24992490
"source": [
2491+
"### GPSR Diagnostics Lattice\n",
2492+
"\n",
25002493
"Lattice creation is done using a wrapper class which contains the Cheetah `Segment` for tracking, the cheetah `Screen` elements to observe the beam, and additional GPSR functionalities:"
25012494
]
25022495
},
@@ -2616,7 +2609,9 @@
26162609
}
26172610
},
26182611
"source": [
2619-
"GPSR model contains the beam NN generator and differentiable cheetah tracking lattice:"
2612+
"### GPSR Model \n",
2613+
"\n",
2614+
"contains the beam NN generator and differentiable cheetah tracking lattice:"
26202615
]
26212616
},
26222617
{
@@ -2642,7 +2637,8 @@
26422637
"source": [
26432638
"Due to the full PyTorch implementation, GPSR can make use of:\n",
26442639
"- PyTorch `DataLoader`\n",
2645-
"- PyTorch Lightining, a package that provides a high level interface to train PyTorch models."
2640+
"- PyTorch Lightining, a package that provides a high level interface to train PyTorch models.\n",
2641+
"- GPU hardware acceleration (if available)"
26462642
]
26472643
},
26482644
{
@@ -2678,7 +2674,7 @@
26782674
}
26792675
},
26802676
"source": [
2681-
"Lightning selects a GPU (if available), and does the training of the GPSR model:"
2677+
"### Training"
26822678
]
26832679
},
26842680
{
@@ -2743,7 +2739,9 @@
27432739
}
27442740
},
27452741
"source": [
2746-
"We can look at the results by looking at the predicted and measured screen images for the scan parameters"
2742+
"### Results\n",
2743+
"\n",
2744+
"Predicted and measured screen images for the scan parameters"
27472745
]
27482746
},
27492747
{
@@ -2786,7 +2784,9 @@
27862784
}
27872785
},
27882786
"source": [
2789-
"Cheetah has a useful plotting routines to see the 2D projections of the 6D beam distributions:"
2787+
"### Results\n",
2788+
"\n",
2789+
"2D projections of the reconstructied 6D phase space distributions:"
27902790
]
27912791
},
27922792
{
@@ -2814,13 +2814,6 @@
28142814
"reconstructed_beam = litgpsr.gpsr_model.beam_generator()\n",
28152815
"reconstructed_beam.plot_distribution();"
28162816
]
2817-
},
2818-
{
2819-
"cell_type": "code",
2820-
"execution_count": null,
2821-
"metadata": {},
2822-
"outputs": [],
2823-
"source": []
28242817
}
28252818
],
28262819
"metadata": {

tutorial.slides.html

Lines changed: 18 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -9820,8 +9820,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
98209820
</div>
98219821
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
98229822
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
9823-
<p>Diagnostics for generative phase space reconstruction (GPSR)</p>
9824-
<p><img alt="No description has been provided for this image" src="fig/gpsr_scan.png" style="width:90%; margin:auto;"/></p>
9823+
<h3 id="Diagnostics-for-generative-phase-space-reconstruction-(GPSR)">Diagnostics for generative phase space reconstruction (GPSR)<a class="anchor-link" href="#Diagnostics-for-generative-phase-space-reconstruction-(GPSR)">¶</a></h3><p><img alt="No description has been provided for this image" src="fig/gpsr_scan.png" style="width:90%; margin:auto;"/></p>
98259824
</div>
98269825
</div>
98279826
</div>
@@ -9832,7 +9831,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
98329831
</div>
98339832
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
98349833
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
9835-
<p>Load example GPSR dataset</p>
9834+
<h3 id="Example-GPSR-Dataset">Example GPSR Dataset<a class="anchor-link" href="#Example-GPSR-Dataset">¶</a></h3>
98369835
</div>
98379836
</div>
98389837
</div>
@@ -9863,25 +9862,14 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
98639862
</div>
98649863
</div>
98659864
</div>
9866-
</div></div><div class="fragment">
9867-
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell">
9868-
<div class="jp-Cell-inputWrapper" tabindex="0">
9869-
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
9870-
</div>
9871-
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
9872-
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
9873-
</div>
9874-
</div>
9875-
</div>
98769865
</div></div></section></section><section><section>
98779866
<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell">
98789867
<div class="jp-Cell-inputWrapper" tabindex="0">
98799868
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
98809869
</div>
98819870
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
98829871
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
9883-
<p>Let's inspect the GPSR dataset.</p>
9884-
<p>The dataset is a custom PyTorch <code>Dataset</code>:</p>
9872+
<h3 id="Let's-inspect-the-GPSR-dataset.">Let's inspect the GPSR dataset.<a class="anchor-link" href="#Let's-inspect-the-GPSR-dataset.">¶</a></h3><p>The dataset is a custom PyTorch <code>Dataset</code>:</p>
98859873
</div>
98869874
</div>
98879875
</div>
@@ -9890,11 +9878,11 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
98909878
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
98919879
</div>
98929880
<div class="jp-InputArea jp-Cell-inputArea">
9893-
<div class="jp-InputPrompt jp-InputArea-prompt">In [38]:</div>
9881+
<div class="jp-InputPrompt jp-InputArea-prompt">In [50]:</div>
98949882
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
98959883
<div class="cm-editor cm-s-jupyter">
9896-
<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'gpsr dataset class: </span><span class="si">{</span><span class="n">obs_dataset</span><span class="o">.</span><span class="vm">__class__</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span>
9897-
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'gpsr dataset parent class: </span><span class="si">{</span><span class="n">obs_dataset</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__bases__</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="vm">__bases__</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span>
9884+
<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="n">obs_dataset</span><span class="o">.</span><span class="vm">__class__</span><span class="p">)</span>
9885+
<span class="nb">print</span><span class="p">(</span><span class="n">obs_dataset</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__bases__</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="vm">__bases__</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
98989886
</pre></div>
98999887
</div>
99009888
</div>
@@ -9907,8 +9895,8 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
99079895
<div class="jp-OutputArea-child">
99089896
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
99099897
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
9910-
<pre>gpsr dataset class: &lt;class 'gpsr.datasets.SixDReconstructionDataset'&gt;
9911-
gpsr dataset parent class: &lt;class 'torch.utils.data.dataset.Dataset'&gt;
9898+
<pre>&lt;class 'gpsr.datasets.SixDReconstructionDataset'&gt;
9899+
&lt;class 'torch.utils.data.dataset.Dataset'&gt;
99129900
</pre>
99139901
</div>
99149902
</div>
@@ -9930,10 +9918,10 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
99309918
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
99319919
</div>
99329920
<div class="jp-InputArea jp-Cell-inputArea">
9933-
<div class="jp-InputPrompt jp-InputArea-prompt">In [39]:</div>
9921+
<div class="jp-InputPrompt jp-InputArea-prompt">In [51]:</div>
99349922
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
99359923
<div class="cm-editor cm-s-jupyter">
9936-
<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'dataset parameters shape: </span><span class="si">{</span><span class="n">obs_dataset</span><span class="o">.</span><span class="n">six_d_params</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span>
9924+
<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="n">obs_dataset</span><span class="o">.</span><span class="n">six_d_params</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
99379925
</pre></div>
99389926
</div>
99399927
</div>
@@ -9946,7 +9934,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
99469934
<div class="jp-OutputArea-child">
99479935
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
99489936
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
9949-
<pre>dataset parameters shape: torch.Size([2, 2, 5, 3])
9937+
<pre>torch.Size([2, 2, 5, 3])
99509938
</pre>
99519939
</div>
99529940
</div>
@@ -10050,7 +10038,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
1005010038
</div>
1005110039
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
1005210040
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
10053-
<p>Lattice creation is done using a wrapper class which contains the Cheetah <code>Segment</code> for tracking, the cheetah <code>Screen</code> elements to observe the beam, and additional GPSR functionalities:</p>
10041+
<h3 id="GPSR-Diagnostics-Lattice">GPSR Diagnostics Lattice<a class="anchor-link" href="#GPSR-Diagnostics-Lattice">¶</a></h3><p>Lattice creation is done using a wrapper class which contains the Cheetah <code>Segment</code> for tracking, the cheetah <code>Screen</code> elements to observe the beam, and additional GPSR functionalities:</p>
1005410042
</div>
1005510043
</div>
1005610044
</div>
@@ -10182,7 +10170,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
1018210170
</div>
1018310171
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
1018410172
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
10185-
<p>GPSR model contains the beam NN generator and differentiable cheetah tracking lattice:</p>
10173+
<h3 id="GPSR-Model">GPSR Model<a class="anchor-link" href="#GPSR-Model">¶</a></h3><p>contains the beam NN generator and differentiable cheetah tracking lattice:</p>
1018610174
</div>
1018710175
</div>
1018810176
</div>
@@ -10211,6 +10199,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
1021110199
<ul>
1021210200
<li>PyTorch <code>DataLoader</code></li>
1021310201
<li>PyTorch Lightining, a package that provides a high level interface to train PyTorch models.</li>
10202+
<li>GPU hardware acceleration (if available)</li>
1021410203
</ul>
1021510204
</div>
1021610205
</div>
@@ -10253,7 +10242,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
1025310242
</div>
1025410243
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
1025510244
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
10256-
<p>Lightning selects a GPU (if available), and does the training of the GPSR model:</p>
10245+
<h3 id="Training">Training<a class="anchor-link" href="#Training">¶</a></h3>
1025710246
</div>
1025810247
</div>
1025910248
</div>
@@ -10316,7 +10305,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
1031610305
</div>
1031710306
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
1031810307
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
10319-
<p>We can look at the results by looking at the predicted and measured screen images for the scan parameters</p>
10308+
<h3 id="Results">Results<a class="anchor-link" href="#Results">¶</a></h3><p>Predicted and measured screen images for the scan parameters</p>
1032010309
</div>
1032110310
</div>
1032210311
</div>
@@ -10361,7 +10350,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
1036110350
</div>
1036210351
<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
1036310352
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
10364-
<p>Cheetah has a useful plotting routines to see the 2D projections of the 6D beam distributions:</p>
10353+
<h3 id="Results">Results<a class="anchor-link" href="#Results">¶</a></h3><p>2D projections of the reconstructied 6D phase space distributions:</p>
1036510354
</div>
1036610355
</div>
1036710356
</div>
@@ -10393,20 +10382,6 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
1039310382
</div>
1039410383
</div>
1039510384
</div>
10396-
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs">
10397-
<div class="jp-Cell-inputWrapper" tabindex="0">
10398-
<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
10399-
</div>
10400-
<div class="jp-InputArea jp-Cell-inputArea">
10401-
<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div>
10402-
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
10403-
<div class="cm-editor cm-s-jupyter">
10404-
<div class="highlight hl-ipython3"><pre><span></span>
10405-
</pre></div>
10406-
</div>
10407-
</div>
10408-
</div>
10409-
</div>
1041010385
</div></div></section></section>
1041110386
</div>
1041210387
</div>
@@ -10447,7 +10422,7 @@ <h2 style="color: #b51f2a">Example 4: generative phase space reconstruction (10
1044710422
Reveal.addEventListener('slidechanged', update);
1044810423

1044910424
function setScrollingSlide() {
10450-
var scroll = false
10425+
var scroll = true
1045110426
if (scroll === true) {
1045210427
var h = $('.reveal').height() * 0.95;
1045310428
$('section.present').find('section')

0 commit comments

Comments
 (0)