-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
221 lines (202 loc) · 7.05 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from requests_futures.sessions import FuturesSession
from concurrent.futures import wait, FIRST_EXCEPTION
from pprint import pprint
from time import time
import copy
import json
MAX_TIMEOUT = 10
TIMEOUT = 3
def new_session():
def timing(r, *args, **kwargs):
r.end = time()
session = FuturesSession()
session.hooks["response"] = timing
return session
def partition(session, partitions):
try:
session.get(f"http://localhost:8000/block_config?&mode=partitions&partitions={json.dumps(partitions)}").result()
except:
pass
def crash(session, node):
try:
session.post(f"http://localhost:808{node}/crash", timeout=1).result()
except:
pass
def snapshot(session, node):
try:
session.post(f"http://localhost:808{node}/snapshot", timeout=1).result()
except:
pass
def print_log(session, node):
try:
session.get(f"http://localhost:808{node}/print_log", timeout=1).result()
except:
pass
def clear(session, futures_list, node):
future = session.post(f"http://localhost:808{node}/clear", timeout=MAX_TIMEOUT)
future.start = time()
future.input = {}
future.op = "clear"
future.node = node
futures_list.append(future)
return future
def sc_read(session, futures_list, node, key):
future = session.get(f"http://localhost:808{node}/get/{key}", timeout=MAX_TIMEOUT)
future.start = time()
future.input = {"key": key}
future.op = "read"
future.node = node
futures_list.append(future)
return future
def read(session, futures_list, node, key):
future = session.get(f"http://localhost:808{node}/linearizable/get/{key}", timeout=MAX_TIMEOUT)
future.start = time()
future.input = {"key": key}
future.op = "read"
future.node = node
futures_list.append(future)
return future
def put(session, futures_list, node, key, val):
future = session.put(f"http://localhost:808{node}/put", json={"key":key, "value":val}, timeout=MAX_TIMEOUT)
future.start = time()
future.input = {"key": key, "value": val}
future.op = "put"
future.node = node
futures_list.append(future)
return future
def cas(session, futures_list, node, key, new_val, expected_val):
future = session.post(f"http://localhost:808{node}/cas", json={"key":key, "new_value":new_val, "expected_value":expected_val}, timeout=MAX_TIMEOUT)
future.start = time()
future.input = {"key": key, "new_value": new_val, "expected_value": expected_val}
future.op = "cas"
future.node = node
futures_list.append(future)
return future
def delete(session, futures_list, node, key):
future = session.delete(f"http://localhost:808{node}/delete/{key}", timeout=MAX_TIMEOUT)
future.start = time()
future.input = {"key": key}
future.op = "delete"
future.node = node
futures_list.append(future)
return future
def collect_results(futures_list):
results_list = []
(done, not_done) = wait(futures_list, timeout=TIMEOUT, return_when=FIRST_EXCEPTION)
for f in done:
r = None
try:
r = f.result()
except:
not_done.add(f)
continue
if r.ok:
results_list.append({
"start": f.start,
"end": r.end,
"node": f.node,
"op": f.op,
"input": f.input,
"result": r.json(),
})
for f in not_done:
results_list.append({
"start":f.start,
"end": float("inf"),
"node": f.node,
"op": f.op,
"input": f.input,
"result": None,
})
return results_list
def wing_gong(results_list):
"""
The Wing & Gong linearizability checker algorithm, implemented for Key Value stores.
Takes an input trace in a format like the following
[{
"start": 1,
"end": 2,
"op": "put",
"input": {"key": "1", "value": "2"},
"result": {"prev_kv": None},
}, ...]
"""
class S:
def __init__(self):
self.state = {}
def perform(self, event):
op = event["op"]
if op == "put":
key = event["input"]["key"]
val = event["input"]["value"]
result = {"prev_kv": None}
if key in self.state:
result["prev_kv"] = {"key": key, "value": self.state[key]}
self.state[key] = val
return result
if op == "cas":
key = event["input"]["key"]
new_val = event["input"]["new_value"]
exp_val = event["input"]["expected_value"]
result = {"prev_kv": None}
if key in self.state:
result["prev_kv"] = {"key": key, "value": self.state[key]}
if self.state[key] == exp_val:
self.state[key] = new_val
return result
if op == "delete":
key = event["input"]["key"]
result = {"prev_kv": None}
if key in self.state:
result["prev_kv"] = {"key": key, "value": self.state[key]}
del self.state[key]
return result
if op == "read":
key = event["input"]["key"]
if not key in self.state:
return {"key": key, "value": None}
else:
return {"key": key, "value": self.state[key]}
if op == "clear":
self.state.clear()
return None
def search(h, s):
# print(f"state: {s.state}, events left:")
# pprint(h)
if len(h) == 0:
return True
min_end = h[0]["end"]
for event in h:
if event["start"] >= min_end:
continue
new_s = copy.deepcopy(s)
res = new_s.perform(event)
new_h = copy.copy(h)
new_h.remove(event)
if (event["end"] == float("inf") or res == event["result"]) and search(new_h, new_s):
return True
return False
list.sort(results_list, key=lambda x: x["end"])
if search(results_list, S()):
print("The execution is linearizable.")
return True
else:
pprint(results_list)
print("The execution is NOT linearizable.")
return False
def get_availability(results_list, availability={}):
for event in results_list:
node = event["node"]
if not node in availability:
availability[node] = (0, 0)
if event["end"] < float("inf"):
(returns, invokes) = availability[node]
availability[node] = (returns+1, invokes+1)
else:
(returns, invokes) = availability[node]
availability[node] = (returns, invokes+1)
return availability
def print_availability(availability):
print("Availability per node:")
for (node, (returns, invokes)) in availability.items():
print(f"Node {node} responded to {(returns / invokes * 100):.1f}% of client requests.")