-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet_nasa_train.py
210 lines (169 loc) · 6.71 KB
/
resnet_nasa_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# 2022.06.28-Changed for building CMT
# Huawei Technologies Co., Ltd. <foss@huawei.com>
# Modified from Fackbook, Deit
# jianyuan.guo@huawei.com
#
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from utils.tools import *
from model.crossformer import CrossFormer
from torch.autograd import Variable
import torch
import torch.optim as optim
import time
import timm
from loguru import logger
from apex import amp
torch.multiprocessing.set_sharing_strategy('file_system')
from relative_similarity import *
from centroids_generator import *
import torch.nn.functional as F
from loss.loss import RelaHashLoss
torch.manual_seed(3407)
torch.cuda.manual_seed(3407)
from timm.scheduler import create_scheduler, CosineLRScheduler
from timm.optim import create_optimizer
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, get_state_dict, ModelEma, ApexScaler
from loguru import logger
import CrossFormer_utils as utils
try:
from apex import amp
from apex.parallel import DistributedDataParallel as ApexDDP
from apex.parallel import convert_syncbn_model
has_apex = True
except ImportError:
has_apex = False
import warnings
warnings.filterwarnings("ignore") # Del ImageNet Warnings
import os
# from cmt_args import get_args_parser
# from swiftformer_args import get_args_parser
from crossFormer_args import get_config as get_configs
from crossFormer_args import parse_option
from loss.hypbird import margin_contrastive
from networks import ResNet50_
import loss.nasaloss as nasa
def build_model(config, args, bit):
model = ResNet50_(bit)
return model
def get_config():
config = {
"alpha": 0.1,
'info': "[ResNet]",
'loss_type': "Rela",
"step_continuation": 20,
"resize_size": 256,
"crop_size": 224,
"batch_size": 64,
# "datasets": "mirflickr",
"datasets": "cifar10",
# "datasets":'nuswide_21',
# "datasets":'coco',
"Label_dim": 10,
"epoch": 700,
"test_map": 0,
"save_path": "save/HashNet",
"device": torch.device("cuda:0"),
'test_device': torch.device("cuda:1"),
"bit_list": [16, 32, 64, 128],
"img_size": 224,
"patch_size": 4,
"in_chans": 3,
"num_work": 10,
"model_type": "ResNet",
"top_img": 100,
# RelaHash
"Beta": 8,
'm': 0.7,
}
config = config_dataset(config)
return config
def train_val(config, bit, args=None, configs=None):
device = torch.device(config['device'])
torch.manual_seed(3407)
np.random.seed(3407)
torch.cuda.manual_seed(3407)
cudnn.benchmark = True
print(f"Creating model: {args.cfg}")
model = build_model(configs, args, bit)
model.to(device)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
input_size = [1, 3, 224, 224]
input = torch.randn(input_size).cuda()
from torchprofile import profile_macs
if 'asmlp' not in args.cfg:
macs = profile_macs(model.eval(), input)
print('model flops:', macs, 'input_size:', input_size)
model.train()
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
# linear_scaled_lr = args.lr * args.batch_size / 512.0
args.lr = linear_scaled_lr
print('learning rate: ', args.lr)
optimizer = create_optimizer(args, model)
model, optimizer = amp.initialize(model, optimizer, opt_level='O2')
loss_scaler = ApexScaler()
print('Using NVIDIA APEX AMP. Training in mixed precision.')
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
model.to(config["device"])
project = nasa.ProjectLayer(bit).to(device)
nasa_loss = nasa.NASA_loss(device=device)
triplet = nasa.DTSHLoss()
optimizer_project = torch.optim.Adam(project.parameters(),lr=1e-4)
train_loader, test_loader, dataset_loader, num_train, num_test, num_dataset = get_data(config)
Best_mAP = 0
for epoch in range(config["epoch"]):
# model.module.update_temperature()
current_time = time.strftime('%H:%M:%S', time.localtime(time.time()))
logger.info("%s[%2d/%2d][%s] bit:%d, datasets:%s, training...." % (
config["info"], epoch + 1, config["epoch"], current_time, bit, config["datasets"]), end="")
model.train()
train_loss = 0
for image, label, ind in train_loader:
image = image.to(device)
label = label.to(device)
with torch.cuda.amp.autocast():
u = model(image)
u = F.normalize(u)
loss1 = nasa_loss(u,project(u))
loss2 = triplet(u,label)
train_loss += loss1.item() + loss2.item()
optimizer.zero_grad()
optimizer_project.zero_grad()
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss1 + loss2, optimizer, clip_grad=None,
parameters=model.parameters(), create_graph=is_second_order)
# loss_scaler(loss2, optimizer, clip_grad=None,
# parameters=model.parameters(), create_graph=is_second_order)
optimizer_project.step()
train_loss = train_loss / len(train_loader)
# /home/wbt/conda_env_with_new_amp/conda_env/anaconda3/bin/python3.9 CMT_train.py --output_dir './' --model cmt_s --batch-size 32 --apex-amp --input-size 224 --weight-decay 0.05 --drop-path 0.1 --epochs 300 --test_freq 100 --test_epoch 260 --warmup-lr 1e-7 --warmup-epochs 20
logger.info("\b\b\b\b\b\b\b train_loss:%.4f" % (train_loss))
if (epoch + 1) > 300:
Best_mAP, index_img = validate(config, Best_mAP, test_loader, dataset_loader, model, bit, epoch, 10)
model.to(config["device"])
if __name__ == '__main__':
# parser = argparse.ArgumentParser(' traini ng and evaluation script', parents=[get_config()])
# args = parser.parse_args()
args, configs = parse_option()
config = get_config()
# 建立日志文件(Create log file)
logger.add('logs/{time}' + config["info"] + '_' + config["datasets"] + ' alpha ' + str(config["alpha"]) + '.log',
rotation='50 MB', level='DEBUG')
logger.info(config)
for bit in config["bit_list"]:
config["pr_curve_path"] = f"log/alexnet/HashNet_{config['datasets']}_{bit}.json"
train_val(config, bit, args, configs)