-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathDCSAM.cpp
196 lines (169 loc) · 7.36 KB
/
DCSAM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/**
* @file DCSAM.cpp
* @brief Discrete-Continuous Smoothing and Mapping for Factored Models
* @author Kevin Doherty, kdoherty@mit.edu
* Copyright 2020 The Ambitious Folks of the MRG
*
*/
#include "dcsam/DCSAM.h"
#include "dcsam/DCContinuousFactor.h"
#include "dcsam/DCDiscreteFactor.h"
#include "dcsam/DiscreteMarginalsOrdered.h"
namespace dcsam {
DCSAM::DCSAM() {
// Setup isam
isam_params_.relinearizeThreshold = 0.01;
isam_params_.relinearizeSkip = 1;
isam_params_.setOptimizationParams(gtsam::ISAM2DoglegParams());
isam_ = gtsam::ISAM2(isam_params_);
}
DCSAM::DCSAM(const gtsam::ISAM2Params &isam_params)
: isam_params_(isam_params) {
isam_ = gtsam::ISAM2(isam_params_);
}
void DCSAM::update(const gtsam::NonlinearFactorGraph &graph,
const gtsam::DiscreteFactorGraph &dfg,
const DCFactorGraph &dcfg,
const gtsam::Values &initialGuessContinuous,
const DiscreteValues &initialGuessDiscrete,
const gtsam::FactorIndices &removeFactorIndices,
const gtsam::FactorIndices &removeDiscreteFactorIndices) {
// First things first: get rid of factors that are to be removed so updates
// to follow take the removals into account
isam_.update(gtsam::NonlinearFactorGraph(), gtsam::Values(), removeFactorIndices);
for (auto& i : removeDiscreteFactorIndices) {
dfg_.remove(i);
}
// Next: combine currContinuous_ estimate with the new values
// from initialGuessContinuous to produce the full continuous variable state.
for (const gtsam::Key k : initialGuessContinuous.keys()) {
if (currContinuous_.exists(k))
currContinuous_.update(k, initialGuessContinuous.at(k));
else
currContinuous_.insert(k, initialGuessContinuous.at(k));
}
// Also combine currDiscrete_ estimate with new values from
// initialGuessDiscrete to give a full discrete variable state.
for (const auto &kv : initialGuessDiscrete) {
// This will update the element with key `kv.first` if one exists, or add a
// new element with key `kv.first` if not.
currDiscrete_[kv.first] = initialGuessDiscrete.at(kv.first);
}
// We'll combine the nonlinear factors with DCContinuous factors before
// passing to the continuous solver; likewise for the discrete factors and
// DCDiscreteFactors.
gtsam::NonlinearFactorGraph combined;
gtsam::DiscreteFactorGraph discreteCombined;
// Populate combined and discreteCombined with the provided nonlinear and
// discrete factors, respectively.
for (auto &factor : graph) combined.add(factor);
for (auto &factor : dfg) discreteCombined.push_back(factor);
// Each DCFactor will be split into a separate discrete and continuous
// component
for (auto &dcfactor : dcfg) {
DCDiscreteFactor dcDiscreteFactor(dcfactor);
auto sharedDiscrete =
boost::make_shared<DCDiscreteFactor>(dcDiscreteFactor);
discreteCombined.push_back(sharedDiscrete);
dcDiscreteFactors_.push_back(sharedDiscrete);
}
// Set discrete information in DCDiscreteFactors.
updateDiscrete(discreteCombined, currContinuous_, currDiscrete_);
// Update current discrete state estimate.
if (!initialGuessContinuous.empty() && initialGuessDiscrete.empty() &&
discreteCombined.empty()) {
// This is an odometry?
} else {
currDiscrete_ = solveDiscrete();
}
for (auto &dcfactor : dcfg) {
DCContinuousFactor dcContinuousFactor(dcfactor);
auto sharedContinuous =
boost::make_shared<DCContinuousFactor>(dcContinuousFactor);
sharedContinuous->updateDiscrete(currDiscrete_);
combined.push_back(sharedContinuous);
dcContinuousFactors_.push_back(sharedContinuous);
}
// Only the initialGuess needs to be provided for the continuous solver (not
// the entire continuous state).
updateContinuousInfo(currDiscrete_, combined, initialGuessContinuous,
removeFactorIndices);
currContinuous_ = isam_.calculateEstimate();
// Update discrete info from last solve and
updateDiscrete(discreteCombined, currContinuous_, currDiscrete_);
}
void DCSAM::update(const HybridFactorGraph &hfg,
const gtsam::Values &initialGuessContinuous,
const DiscreteValues &initialGuessDiscrete,
const gtsam::FactorIndices &removeFactorIndices,
const gtsam::FactorIndices &removeDiscreteFactorIndices) {
update(hfg.nonlinearGraph(), hfg.discreteGraph(), hfg.dcGraph(),
initialGuessContinuous, initialGuessDiscrete,
removeFactorIndices, removeDiscreteFactorIndices);
}
void DCSAM::update() {
update(gtsam::NonlinearFactorGraph(), gtsam::DiscreteFactorGraph(),
DCFactorGraph());
}
void DCSAM::updateDiscrete(
const gtsam::DiscreteFactorGraph &dfg = gtsam::DiscreteFactorGraph(),
const gtsam::Values &continuousVals = gtsam::Values(),
const DiscreteValues &discreteVals = DiscreteValues()) {
for (auto &factor : dfg) {
dfg_.push_back(factor);
}
updateDiscreteInfo(continuousVals, discreteVals);
}
void DCSAM::updateDiscreteInfo(const gtsam::Values &continuousVals,
const DiscreteValues &discreteVals) {
if (continuousVals.empty()) return;
for (auto factor : dcDiscreteFactors_) {
boost::shared_ptr<DCDiscreteFactor> dcDiscrete =
boost::static_pointer_cast<DCDiscreteFactor>(factor);
dcDiscrete->updateContinuous(continuousVals);
dcDiscrete->updateDiscrete(discreteVals);
}
}
void DCSAM::updateContinuous() {
isam_.update();
currContinuous_ = isam_.calculateEstimate();
}
void DCSAM::updateContinuousInfo(const DiscreteValues &discreteVals,
const gtsam::NonlinearFactorGraph &newFactors,
const gtsam::Values &initialGuess,
const gtsam::FactorIndices &removeFactorIndices) {
gtsam::ISAM2UpdateParams updateParams;
gtsam::FastMap<gtsam::FactorIndex, gtsam::KeySet> newAffectedKeys;
for (size_t j = 0; j < dcContinuousFactors_.size(); j++) {
boost::shared_ptr<DCContinuousFactor> dcContinuousFactor =
boost::static_pointer_cast<DCContinuousFactor>(dcContinuousFactors_[j]);
dcContinuousFactor->updateDiscrete(discreteVals);
for (const gtsam::Key &k : dcContinuousFactor->keys()) {
newAffectedKeys[j].insert(k);
}
}
updateParams.newAffectedKeys = std::move(newAffectedKeys);
updateParams.removeFactorIndices = removeFactorIndices;
// NOTE: I am not yet 100% sure this is the right way to handle this update.
isam_.update(newFactors, initialGuess, updateParams);
}
DiscreteValues DCSAM::solveDiscrete() const {
DiscreteValues discreteVals = dfg_.optimize();
return discreteVals;
}
DCValues DCSAM::calculateEstimate() const {
// NOTE: if we have these cached from solves, we could presumably just return
// the cached values.
gtsam::Values continuousVals = isam_.calculateEstimate();
DiscreteValues discreteVals = dfg_.optimize();
DCValues dcValues(continuousVals, discreteVals);
return dcValues;
}
// NOTE separate dcmarginals class?
DCMarginals DCSAM::getMarginals(const gtsam::NonlinearFactorGraph &graph,
const gtsam::Values &continuousEst,
const gtsam::DiscreteFactorGraph &dfg) {
return DCMarginals{gtsam::Marginals(graph, continuousEst),
dcsam::DiscreteMarginalsOrdered(dfg)};
}
} // namespace dcsam