-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfix_parameter.py
45 lines (34 loc) · 1.83 KB
/
fix_parameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 8 09:20:44 2022
@author: mahom
"""
import torch
def fix_parameter(model,kernel_type,method):
if method == "gpi":
shared_noise_variance = 0 # 1e-4
task_num = model.likelihood.num_tasks
if kernel_type == "linear":
model.covar_module.kernels[0].base_kernel.variance = torch.ones(task_num,1,1) # If selected "outputscale" the tensor should be 1d tensor of length task_num
model.likelihood.noise = shared_noise_variance
new_parameters = set(list(model.parameters()))-{model.likelihood.raw_noise}-{model.covar_module.kernels[0].base_kernel.raw_variance}
if kernel_type == "rbf":
model.likelihood.noise = shared_noise_variance
new_parameters = set(list(model.parameters()))-{model.likelihood.raw_noise}-{model.mean_module.constant}
if kernel_type == "matern":
model.likelihood.noise = shared_noise_variance
new_parameters = set(list(model.parameters()))-{model.likelihood.raw_noise}
#new_parameters = set(list(model.parameters()))
elif method == "gpi_ori":
if kernel_type == "rbf":
new_parameters = set(list(model.parameters()))-{model.mean_module.constant}
model.mean_module.initialize(constant=0.)
elif method == "gpk_sp":
if kernel_type == "rbf":
new_parameters = set(list(model.parameters()))-{model.mean_module.constant}
model.mean_module.initialize(constant=0.)
elif method == "gpmt":
if kernel_type == "rbf":
new_parameters = set(list(model.parameters()))-{model.mean_module.base_means}
#model.mean_module.initialize(constant=0.)
return model,new_parameters