forked from Luckysoutheast/LRMAHpan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
213 lines (159 loc) · 8.42 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
# from gensim.models.word2vec import Word2Vec
from layers import SpatialDropout, ProjSumEmbedding, Capsule, Attention
class LstmGruNet(nn.Module):
def __init__(self, embedding_size=100, lstm_units=128,
gru_units=128):
super(LstmGruNet, self).__init__()
# model = Word2Vec.load("../word2vec.bin")
# weight = model.wv.vectors
# b = np.array([[0]*100])
# weight=np.insert(weight, 0, values=b, axis=0)
# self.embedding = ProjSumEmbedding(embedding_matrices, embedding_size)
self.embedding = nn.Embedding(23, embedding_size)
self.embedding_dropout = SpatialDropout(0.2)
self.lstm = nn.LSTM(embedding_size, lstm_units, bidirectional=True, batch_first=True)
self.gru = nn.GRU(lstm_units * 2, gru_units, bidirectional=True, batch_first=True)
dense_hidden_units = gru_units * 4
self.linear1 = nn.Linear(dense_hidden_units, dense_hidden_units)
self.linear2 = nn.Linear(dense_hidden_units, dense_hidden_units)
self.linear_out = nn.Linear(dense_hidden_units, 2)
# self.linear_aux_out = nn.Linear(dense_hidden_units, num_aux_targets)
def forward(self, x):
h_embedding = self.embedding(x)
h_embedding = self.embedding_dropout(h_embedding)
h1, _ = self.lstm(h_embedding)
h2, _ = self.gru(h1)
# global average pooling
avg_pool = torch.mean(h2, 1)
# global max pooling
max_pool, _ = torch.max(h2, 1)
h_conc = torch.cat((max_pool, avg_pool), 1)
h_conc_linear1 = F.relu(self.linear1(h_conc))
# h_conc_linear2 = F.relu(self.linear2(h_conc))
hidden = h_conc + h_conc_linear1
result = self.linear_out(hidden)
# aux_result = self.linear_aux_out(hidden)
# out = torch.cat([result, aux_result], 1)
return result
class LstmGruModel(nn.Module):
def __init__(self, lstm_hidden_size=128, gru_hidden_size=128,
embedding_dropout=0.2, out_size=2, out_dropout=0.1):
super(LstmGruModel, self).__init__()
self.gru_hidden_size = gru_hidden_size
# self.embedding = nn.Embedding(*embedding_matrix.shape)
self.embedding = nn.Embedding(23, 100)
# self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))
# self.embedding.weight.requires_grad = False
self.embedding_dropout = SpatialDropout(0.2)
self.embedding_dropout = nn.Dropout2d(embedding_dropout)
self.lstm = nn.LSTM(100, lstm_hidden_size, bidirectional=True, batch_first=True)
self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)
self.linear = nn.Linear(gru_hidden_size * 6, out_size)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(out_dropout)
self.out = nn.Linear(out_size, 2)
def apply_spatial_dropout(self, h_embedding):
h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)
h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)
return h_embedding
def forward(self, x):
h_embedding = self.embedding(x)
h_embedding = self.apply_spatial_dropout(h_embedding)
h_lstm, _ = self.lstm(h_embedding)
h_gru, hh_gru = self.gru(h_lstm)
hh_gru = hh_gru.view(-1, self.gru_hidden_size * 2)
avg_pool = torch.mean(h_gru, 1)
max_pool, _ = torch.max(h_gru, 1)
conc = torch.cat((hh_gru, avg_pool, max_pool), 1)
conc = self.relu(self.linear(conc))
conc = self.dropout(conc)
out = self.out(conc)
return out
class LstmCapsuleAttenModel(nn.Module):
def __init__(self, maxlen=14, lstm_hidden_size=128, gru_hidden_size=128,
embedding_dropout=0.2, dropout1=0.2, dropout2=0.1, out_size=16,
num_capsule=5, dim_capsule=5, caps_out=1, caps_dropout=0.3):
super(LstmCapsuleAttenModel, self).__init__()
# self.embedding = nn.Embedding(*embedding_matrix.shape)
# self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))
# self.embedding.weight.requires_grad = False
self.embedding = nn.Embedding(23, 100)
self.embedding_dropout = nn.Dropout2d(embedding_dropout)
self.lstm = nn.LSTM(100, lstm_hidden_size, bidirectional=True, batch_first=True)
self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)
self.lstm_attention = Attention(lstm_hidden_size * 2, maxlen=maxlen)
self.gru_attention = Attention(gru_hidden_size * 2, maxlen=maxlen)
self.capsule = Capsule(input_dim_capsule=gru_hidden_size * 2,
num_capsule=num_capsule,
dim_capsule=dim_capsule)
self.dropout_caps = nn.Dropout(caps_dropout)
self.lin_caps = nn.Linear(num_capsule * dim_capsule, caps_out)
self.norm = nn.LayerNorm(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out)
self.dropout1 = nn.Dropout(dropout1)
self.linear = nn.Linear(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out, out_size)
self.dropout2 = nn.Dropout(dropout2)
self.out = nn.Linear(out_size, 2)
def apply_spatial_dropout(self, h_embedding):
h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)
h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)
return h_embedding
def forward(self, x):
h_embedding = self.embedding(x)
h_embedding = self.apply_spatial_dropout(h_embedding)
h_lstm, _ = self.lstm(h_embedding)
h_gru, _ = self.gru(h_lstm)
h_lstm_atten = self.lstm_attention(h_lstm)
h_gru_atten = self.gru_attention(h_gru)
content3 = self.capsule(h_gru)
batch_size = content3.size(0)
content3 = content3.view(batch_size, -1)
content3 = self.dropout_caps(content3)
content3 = torch.relu(self.lin_caps(content3))
avg_pool = torch.mean(h_gru, 1)
max_pool, _ = torch.max(h_gru, 1)
conc = torch.cat((h_lstm_atten, h_gru_atten, content3, avg_pool, max_pool), 1)
conc = self.norm(conc)
conc = self.dropout1(conc)
conc = torch.relu(conc)
conc = self.linear(conc)
conc = self.dropout2(conc)
out = self.out(conc)
return out
class LstmConvModel(nn.Module):
def __init__(self, embedding_matrix, lstm_hidden_size=128, gru_hidden_size=128, n_channels=64,
embedding_dropout=0.2, out_size=20, out_dropout=0.1):
super(LstmConvModel, self).__init__()
self.embedding = nn.Embedding(*embedding_matrix.shape)
self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))
self.embedding.weight.requires_grad = False
self.embedding_dropout = nn.Dropout2d(0.2)
self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)
self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)
self.conv = nn.Conv1d(gru_hidden_size * 2, n_channels, 3, padding=2)
nn.init.xavier_uniform_(self.conv.weight)
self.linear = nn.Linear(n_channels * 2, out_size)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(out_dropout)
self.out = nn.Linear(out_size, 1)
def apply_spatial_dropout(self, h_embedding):
h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)
h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)
return h_embedding
def forward(self, x):
h_embedding = self.embedding(x)
h_embedding = self.apply_spatial_dropout(h_embedding)
h_lstm, _ = self.lstm(h_embedding)
h_gru, _ = self.gru(h_lstm)
h_gru = h_gru.transpose(2, 1)
conv = self.conv(h_gru)
conv_avg_pool = torch.mean(conv, 2)
conv_max_pool, _ = torch.max(conv, 2)
conc = torch.cat((conv_avg_pool, conv_max_pool), 1)
conc = self.relu(self.linear(conc))
conc = self.dropout(conc)
out = self.out(conc)
return out