Skip to content

Commit e8a288c

Browse files
committed
docs: update README.md
1 parent 6aebc5e commit e8a288c

File tree

4 files changed

+117
-26
lines changed

4 files changed

+117
-26
lines changed

README.md

Lines changed: 47 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -63,19 +63,57 @@ cp config-template.yaml config.yaml
6363

6464
Add your model `api_key` - AgentMesh supports `openai`, `claude`, `deepseek`, `qwen`, and others.
6565

66-
> The template includes a pre-configured `software_team` with three roles (PM, architect, engineer) that collaborate on
67-
> software development tasks.
66+
The template includes two examples for quick testing:
67+
68+
- `general_team`: A single general-purpose agent skilled in search, research, and information organization. Recommended to configure with google_search and browser tools.
69+
- `software_team`: A development team with three roles (product manager, engineer, and tester) that can collaborate on web application development and testing tasks, delivering complete project documentation and code.
70+
71+
You can modify the template to customize different models, tools, system prompts, and other configurations for each agent.
6872

6973
#### 1.3 Execution
7074

75+
You can run tasks directly using command-line arguments, specifying the team with `-t` and your question with `-q`:
76+
77+
```bash
78+
python main.py -t general_team -q "analyze the trends in multi-agent technology"
79+
python main.py -t software_team -q "develop a simple trial booking page for AgentMesh multi-agent platform"
80+
```
81+
82+
Alternatively, enter interactive mode for multi-turn conversations:
83+
84+
```bash
85+
python main.py -l # List available agent teams
86+
python main.py -t software_team # Run the 'software_team'
87+
```
88+
89+
### 2. Docker
90+
91+
Download the docker-compose configuration file:
92+
7193
```bash
72-
python main.py -l # List available agent teams
73-
python main.py -t software_team # Run the 'software_team'
94+
curl -O https://raw.githubusercontent.com/MinimalFuture/AgentMesh/main/docker-compose.yml
7495
```
7596

76-
Enter your requirements in the interactive prompt to begin.
97+
Download the configuration template and add your model API keys (see section 1.2 for configuration details):
98+
99+
```bash
100+
curl -o config.yaml https://raw.githubusercontent.com/MinimalFuture/AgentMesh/main/config-template.yaml
101+
```
102+
103+
Run the Docker container:
104+
105+
```bash
106+
docker-compose run --rm agentmesh bash
107+
```
108+
109+
Once the container starts, you'll enter the command line. The usage is the same as in section 1.3 - specify a team to start the interactive mode:
110+
111+
```bash
112+
python main.py -l # List available agent teams
113+
python main.py -t general_team # Start multi-turn conversation with the specified team
114+
```
77115

78-
### 2. SDK
116+
### 3. SDK
79117

80118
Use the AgentMesh SDK to build custom agent teams programmatically:
81119

@@ -90,7 +128,7 @@ from agentmesh import AgentTeam, Agent, LLMModel
90128
from agentmesh.tools import *
91129

92130
# Initialize model
93-
model = LLMModel(model="gpt-4o", api_key="YOUR_API_KEY")
131+
model = LLMModel(model="gpt-4.1", api_key="YOUR_API_KEY")
94132

95133
# Create team and add agents
96134
team = AgentTeam(name="software_team", description="A software development team", model=model)
@@ -106,7 +144,7 @@ team.add(Agent(name="Developer", description="Implements code based on requireme
106144
result = team.run(task="Write a Snake client game")
107145
```
108146

109-
### 3. Web Service
147+
### 4. Web Service
110148

111149
Coming soon
112150

@@ -139,7 +177,7 @@ Coming soon
139177

140178
## Contribution
141179

142-
Star this project to receive notifications about updates.
180+
⭐️ Star this project to receive notifications about updates.
143181

144182
Feel free to [submit PRs](https://github.com/MinimalFuture/AgentMesh/pulls) to contribute to this project.
145183
For issues or ideas, please [open an issue](https://github.com/MinimalFuture/AgentMesh/issues).

config-template.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ tools:
2424
teams:
2525
general_team:
2626
model: "gpt-4.1"
27-
description: "A versatile research and information agent team"
27+
description: "A general-purpose research and information agent team"
2828
max_steps: 10
2929
agents:
3030
- name: "General Agent"

docker-compose.yml

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
version: '2.0'
2+
3+
services:
4+
agentmesh:
5+
image: minimalfuture/agentmesh
6+
container_name: agentmesh
7+
security_opt:
8+
- seccomp:unconfined
9+
stdin_open: true # Enable interactive input
10+
tty: true # Allocate a pseudo-TTY
11+
environment:
12+
DOCKER_CONTAINER: 'True'
13+
volumes:
14+
- ./config.yaml:/app/config.yaml

docs/README-CN.md

Lines changed: 55 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,8 @@
11
<p align="center"><img src= "https://github.com/user-attachments/assets/743bb0da-3070-4e89-b744-e7b3ab886fe8" alt="AgentMesh" width="450" /></p>
22

3-
43
<a href="/README.md">English</a> | 中文
54

6-
AgentMesh是一个开源的 **多智能体 (Multi-agent) 平台** ,提供开箱即用的Agent开发框架、多Agent间的协同策略、任务规划和自主决策能力。
5+
AgentMesh是一个开源的 **多智能体 (Multi-Agent) 平台** ,提供开箱即用的Agent开发框架、多Agent间的协同策略、任务规划和自主决策能力。
76
在该平台上可以快速构建你的Agent团队,通过多Agent之间的协同完成任务。
87

98
## 概述
@@ -19,7 +18,7 @@ AgentMesh 采用模块化分层设计,提供灵活且可扩展的多智能体
1918

2019
提供三种使用方式快速构建并运行你的 Agent Team:
2120

22-
### 1.终端运行
21+
### 1. 终端运行
2322

2423
在终端中命令行中快速运行多智能体团队:
2524

@@ -60,20 +59,59 @@ cp config-template.yaml config.yaml
6059

6160
填写需要用到的模型 `api_key`,支持 `openai``claude``deepseek``qwen` 等模型。
6261

63-
配置模板中预置了一个名为 `software_team` 的Agent开发团队,包含产品经理、架构师、工程师三种角色,可以协作完成软件开发任务。
62+
配置模板中预置了两个示例供快速体验:
63+
64+
- `general_team`:包含一个通用Agent,擅长进行搜索、研究、信息整理。建议配置 google_search 和 browser 工具
65+
- `software_team`:Agent开发团队,包含产品经理、工程师、测试人员三种角色,可以协作完成web应用的开发测试任务,可交付完整的项目文档和代码。
66+
67+
你可以基于配置模板进行修改,为每个Agent设置不同的模型、工具、系统提示词。
6468

6569
#### 1.3 运行
6670

71+
你可以直接通过命令运行任务,通过 -t 参数指定配置文件中的团队,通过 -q 参数指定需要提出的问题:
72+
73+
```bash
74+
python main.py -t general_team -q "帮我分析多智能体技术发展趋势"
75+
python main.py -t software_team -q "帮我为AgentMesh项目开发一个预约体验的表单页面"
76+
```
77+
78+
同时也可以进入命令行交互模式,通过输入问题进行多轮对话:
79+
80+
```bash
81+
python main.py -l # 查看可用agent team
82+
python main.py -t general_team # 指定一个team
83+
```
84+
85+
### 2. Docker运行
86+
87+
下载 docker compose 配置文件:
88+
89+
```bash
90+
curl -O https://raw.githubusercontent.com/MinimalFuture/AgentMesh/main/docker-compose.yml
91+
```
92+
93+
下载配置模板,参考 1.2 中的配置说明,填写`config.yaml`配置文件中的模型API Key:
94+
95+
```bash
96+
curl -o config.yaml https://raw.githubusercontent.com/MinimalFuture/AgentMesh/main/config-template.yaml
97+
```
98+
99+
运行docker容器:
100+
67101
```bash
68-
python main.py -l # 查看可用agent team
69-
python main.py -t software_team # 运行名为 'software_team' 的team
102+
docker-compose run --rm agentmesh bash
70103
```
71104

72-
进入交互模式后输入需求内容即可开始运行。
105+
容器启动后将进入命令行,与 1.3 中的使用方式相同,指定team后进入交互模式后即可开始对话:
106+
107+
```bash
108+
python main.py -l # 查看可用agent team
109+
python main.py -t general_team # 指定一个team后开始多轮对话
110+
```
73111

74-
### 二、 SDK开发
112+
### 3. SDK集成
75113

76-
`Agentmesh`的核心模块通过SDK对外提供,开发者可基于该SDK快速构建智能体及多智能体团队
114+
`Agentmesh`的核心模块通过SDK对外提供,开发者可基于该SDK构建智能体及多智能体团队,适用于在已有应用中快速获得多智能体协作能力
77115

78116
安装SDK依赖:
79117

@@ -88,23 +126,23 @@ from agentmesh import AgentTeam, Agent, LLMModel
88126
from agentmesh.tools import *
89127

90128
# model
91-
model = LLMModel(model="gpt-4o", api_key="YOUR_API_KEY")
129+
model = LLMModel(model="gpt-4.1", api_key="YOUR_API_KEY")
92130

93131
# team build and add agents
94132
team = AgentTeam(name="software_team", description="A software development team", model=model)
95133

96134
team.add(Agent(name="PM", description="Responsible for product requirements and documentation",
97135
system_prompt="You are an experienced product manager who creates clear and comprehensive PRDs"))
98136

99-
team.add(Agent(name="Developer", description="Implements code based on PRD and architecture design", model=model,
100-
system_prompt="You are a proficient developer who writes clean, efficient, and maintainable code. Follow the PRD requirements and architecture guidelines precisely",
137+
team.add(Agent(name="Developer", description="Implements code based on PRDs", model=model,
138+
system_prompt="You are a proficient developer who writes clean, efficient, and maintainable code. Follow the PRD requirements precisely.",
101139
tools=[Calculator(), GoogleSearch()]))
102140

103141
# run user task
104-
team.run(task="Write a Snake client game")
142+
result = team.run(task="Write a Snake client game")
105143
```
106144

107-
### 三、Web服务运行
145+
### 4. Web服务运行
108146

109147
即将支持
110148

@@ -122,7 +160,7 @@ team.run(task="Write a Snake client game")
122160
### 模型
123161

124162
- **OpenAI**: 支持 GPT 系列模型,推荐使用 `gpt-4.1`, `gpt-4o`, `gpt-4.1-mini`
125-
- **Claude**: 支持 Claude系列模型,推荐使用 `claude-3-7-sonnect-latest`
163+
- **Claude**: 支持 Claude系列模型,推荐使用 `claude-3-7-sonnet-latest`
126164
- **DeepSeek**: 支持 DeepSeek 系列模型,推荐使用 `deepseek-chat`
127165
- **Ollama**: 支持本地部署的开源模型 (即将支持)
128166

@@ -132,11 +170,12 @@ team.run(task="Write a Snake client game")
132170
- **current_time**: 获取当前时间工具,解决模型时间感知问题
133171
- **browser**: 浏览器操作工具,基于browser-use实现,支持网页访问、内容提取和交互操作
134172
- **google_search**: 搜索引擎工具,获取最新信息和知识
173+
- **file_save**: 将Agent输出内容保存在本地工作空间中
135174
- **MCP**: 通过支持MCP协议获得更多工具能力(即将支持)
136175

137176
## 贡献
138177

139-
Star支持和关注本项目,可以接受最新的项目更新通知。
178+
⭐️ Star支持和关注本项目,可以接受最新的项目更新通知。
140179

141180
欢迎 [提交PR](https://github.com/MinimalFuture/AgentMesh/pulls)
142181
来共同参与这个项目,遇到问题或有任何想法可 [提交Issues](https://github.com/MinimalFuture/AgentMesh/issues) 进行反馈。

0 commit comments

Comments
 (0)