diff --git a/test/runtests.jl b/test/runtests.jl index aee01b5..1f816ae 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -35,57 +35,4 @@ else end include("transform.jl") -include("utils.jl") - -# Benchmark the transform function -@testset "Benchmarks" begin - s = 10 # number of samples - e = 1 # number of evals - - # Create an array of input sizes to benchmark for 2D - sizes_2D = [2^i for i in 3:4] - - # Create DataFrames to store the benchmark results - df_dt_2D = DataFrame( - os_info = os_info, - gpu_info = gpu_info, - sizes = sizes_2D, - dt_proposed = Float64[] - ) - - for n in sizes_2D - f = Float32.(rand([0, 1], n, n)) - - if dev != Array - f_dev = dev(f) - dt = @benchmark(transform($boolean_indicator($f_dev)); samples=s, evals=e) - push!(df_dt_2D, [os_info, gpu_info, n, minimum(dt).time]) - end - end - - # Create an array of input sizes to benchmark for 3D - sizes_3D = [2^i for i in 0:2] - - # Create DataFrames to store the benchmark results - df_dt_3D = DataFrame( - os_info = os_info, - gpu_info = gpu_info, - sizes = sizes_3D, - dt_proposed = Float64[] - ) - - for n in sizes_3D - f = Float32.(rand([0, 1], n, n, n)) - - if dev != Array - f_dev = dev(f) - dt = @benchmark(transform($boolean_indicator($f_dev)); samples=s, evals=e) - push!(df_dt_3D, [os_info, gpu_info, n, minimum(dt).time]) - end - end - - # Show the dataframes - @info df_dt_2D - @info df_dt_3D - @test 1 == 1 -end \ No newline at end of file +include("utils.jl") \ No newline at end of file