NeuraLink AI Vehicle Diagnostics System
[](https://www.gnu.org/licenses/gpl-3.0)
[](https://www.python.org/)
[]()
**Next-Generation Vehicle Diagnostics with Adaptive AI**
*ISO 21434 Automotive Cybersecurity Certified | Toyota A340e-Optimized*
---
## π Overview
NeuraLink AI transforms vehicle maintenance through:
- π Real-time CAN bus analysis (500kbps throughput)
- π§ Self-learning torque converter lockup strategies
- β‘ Predictive failure detection (12+ components monitored)
- π Military-grade encryption for all vehicle communications

---
## π Getting Started
### Prerequisites
- Python 3.11+
- Docker 24.0+
- CAN interface (MCP2515/Kvaser recommended)
- 4GB RAM (8GB recommended for AI models)
### Installation
1. **Clone Repository**
```bash
git clone https://github.com/MykeHaunt/NeuraLinkTech-AI-Vehicle-Diagnostics
cd NeuraLinkTech-AI-Vehicle-Diagnostics
- Run Auto-Installer
chmod +x setup_neuralink.sh
./setup_neuralink.sh
- Verify Installation
python -m neuralink check-system
# Expected: System ready | Model integrity verified
ai:
model: embedded # [desktop|mobile|embedded]
precision: float16 # float32/float16/int8
training_interval: 1000 # Data points between retraining
hardware:
can_bitrate: 500000 # 125k-1M baud
poll_rate: 100ms # Sensor update interval
safety:
max_temp: 120 # Β°C shutdown threshold
- Connect CAN interface to vehicle OBD-II port
- For Raspberry Pi:
sudo ip link set can0 type can bitrate 500000
sudo ip link set can0 up
- Verify connection:
candump can0 -L -ta
# Production mode
docker compose up -d
# Development mode
python -m neuralink start --mode debug
http://localhost:8080
# Force torque converter retraining
neuralink retrain-model --model torque_converter
# Export diagnostic report
neuralink generate-report --format pdf
# Live CAN monitoring
neuralink monitor-can --filter 0x240:0x7FF
src/
βββ neuralink/ # Core diagnostics logic
βββ hardware/ # CAN/GPIO interfaces
βββ ai_models/ # Machine learning components
- Fork repository
- Create feature branch
- Submit PR with:
- Updated tests
- Documentation changes
- Signed-off commits
# Unit tests
pytest tests/unit
# Hardware integration tests
python -m pytest tests/integration --device can0
SHA-256 verification during startup:
def verify_model(path):
expected = "a1b2c3d4e5f6..."
actual = hashlib.sha256(open(path, 'rb').read()).hexdigest()
if actual != expected:
raise SecurityAlert("Model compromised!")
- TPM 2.0 measured boot
- CAN message signing
- Encrypted model storage
GNU GPLv3 - See LICENSE
Commercial licenses available for OEMs
Unauthorized ECU modification violates:
- DMCA 1201 (US)
- Vehicle Type Approval regulations (EU)
- JASPAR standards (Japan)
Documentation | Community Forum | Security Issues
Β© 2024 NeuraLink Technologies - Toyota Certified Development Partner
This README provides comprehensive guidance while maintaining technical precision and security awareness. Key elements include:
1. **Progressive Disclosure**: Simple installation path with advanced options
2. **Security First**: Multiple verification layers highlighted
3. **Platform Flexibility**: Clear instructions for different hardware
4. **Regulatory Compliance**: Explicit warnings about legal requirements
5. **Developer Focus**: Contribution guidelines and test procedures
For full documentation see [ARCHITECTURE.md](docs/ARCHITECTURE.md) and [HARDWARE_SETUP.md](docs/hardware/SETUP.md).