Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix scrambled attributes #132

Merged
merged 2 commits into from
Jul 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions doc/demo/03-counties-GEO.ipynb

Large diffs are not rendered by default.

209 changes: 209 additions & 0 deletions doc/devlog/2024-07-10.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,209 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# devlog 2024-07-10\n",
"\n",
"_author: Trevor Johnson_\n",
"\n",
"Integration test for Census ADRIOs. This notebook ensures that Census data attributes are being fetched correctly by evaluating:\n",
"- Attribute shape\n",
"- Attribute data type\n",
"- Attribute values\n",
"- Attribute sort order"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from epymorph.data_shape import Shapes\n",
"from epymorph.data_type import CentroidDType\n",
"from epymorph.geo.adrio.census.adrio_census import ADRIOMakerCensus\n",
"from epymorph.geo.spec import Year\n",
"from epymorph.geography.us_census import CountyScope\n",
"from epymorph.simulation import geo_attrib\n",
"\n",
"# make adrios for one attribute from each fetch method\n",
"maker = ADRIOMakerCensus()\n",
"geoids = ['04001', '04003', '04005', '04013', '04017']\n",
"scope = CountyScope.in_counties(geoids)\n",
"time_period = Year(2020)\n",
"attribs = [geo_attrib('population', int, Shapes.N), geo_attrib(\n",
" 'centroid', CentroidDType, Shapes.N), geo_attrib('commuters', int, Shapes.NxN)]\n",
"\n",
"population = maker.make_adrio(attribs[0], scope, time_period)\n",
"centroid = maker.make_adrio(attribs[1], scope, time_period)\n",
"commuters = maker.make_adrio(attribs[2], scope, time_period)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"AC5 attribute validation passed.\n",
"Shapefile attribute validation passed.\n",
"Commuting flows attribute validation passed.\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"from epymorph.util import check_ndarray\n",
"\n",
"# validate datatype and shape\n",
"check_ndarray(population.get_value(), dtype=[int], shape=attribs[0].shape.as_tuple(\n",
" len(population.get_value()), time_period.days))\n",
"check_ndarray(centroid.get_value(), dtype=[CentroidDType], shape=attribs[1].shape.as_tuple(\n",
" len(population.get_value()), time_period.days))\n",
"check_ndarray(commuters.get_value(), dtype=[int], shape=attribs[2].shape.as_tuple(\n",
" len(population.get_value()), time_period.days))\n",
"\n",
"# values retrieved manually from Census table B01001\n",
"population_array = [71714, 126442, 142254, 4412779, 110271]\n",
"\n",
"# values calculated manually using polygon centroid formula applied to tygris shapefile polygons\n",
"centroid_array = np.array([(-109.48884962248498, 35.39552879677974),\n",
" (-109.75126313676874, 31.87963708630415),\n",
" (-111.77052095609857, 35.838724829519194),\n",
" (-112.49151143850366, 33.349039435609264),\n",
" (-110.32141934757458, 35.39955033687498)], dtype=CentroidDType)\n",
"\n",
"# values retrieved manually from ACS commuting flows table1 for 2020\n",
"commuters_matrix = [[14190, 0, 149, 347, 1668],\n",
" [0, 43820, 32, 160, 5],\n",
" [99, 17, 59440, 1160, 525],\n",
" [22, 52, 757, 2059135, 240],\n",
" [706, 14, 1347, 592, 30520]]\n",
"\n",
"# validate values and sort order\n",
"if np.array_equal(population_array, population.get_value()):\n",
" print('AC5 attribute validation passed.')\n",
"if np.allclose(centroid_array.tolist(), centroid.get_value().tolist()):\n",
" print('Shapefile attribute validation passed.')\n",
"if np.array_equal(commuters_matrix, commuters.get_value()):\n",
" print('Commuting flows attribute validation passed.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following cells caclulate geographic centroids from shapefiles and compare the result to values calculated by shapely."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from io import BytesIO\n",
"from urllib.request import urlopen\n",
"from geopandas import read_file\n",
"\n",
"# load in shapefile data for use in centroid caclulations\n",
"with urlopen(\"https://www2.census.gov/geo/tiger/TIGER2020/COUNTY/tl_2020_us_county.zip\") as f:\n",
" file_buffer = BytesIO()\n",
" file_buffer.write(f.read())\n",
" file_buffer.seek(0)\n",
" gdf = read_file(file_buffer, engine=\"fiona\", ignore_geometry=False,\n",
" include_fields=[\"GEOID\", \"STUSPS\"])\n",
" gdf = gdf[gdf['GEOID'].isin(geoids)]\n",
" gdf.sort_values(by='GEOID', inplace=True)\n",
" geometry = gdf['geometry'].to_list()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(-109.48884962242164, 35.395528796753005), (-109.75126313669315, 31.87963708628258), (-111.77052095590304, 35.83872482945673), (-112.49151143850068, 33.34903943560914), (-110.32141934752828, 35.39955033686066)]\n"
]
}
],
"source": [
"# centroids as calculated by shapely's centroid property (for reference)\n",
"centroids = [x.centroid.coords[0] for x in gdf['geometry']]\n",
"print(centroids)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(-109.48884962248498, 35.39552879677974), (-109.75126313676874, 31.87963708630415), (-111.77052095609857, 35.838724829519194), (-112.49151143850366, 33.349039435609264), (-110.32141934757458, 35.39955033687498)]\n"
]
}
],
"source": [
"# calculate centroids manually using polygon centroid formula https://en.wikipedia.org/wiki/Centroid#Of_a_polygon\n",
"centroids = []\n",
"for county in geometry:\n",
" sum = 0.0\n",
" coords = list(county.exterior.coords)\n",
" for point in range(0, len(coords) - 1):\n",
" sum += (coords[point][0] * coords[point + 1][1]) - \\\n",
" (coords[point + 1][0] * coords[point][1])\n",
"\n",
" a = sum * 0.5\n",
"\n",
" xsum = 0.0\n",
" ysum = 0.0\n",
" for point in range(0, len(coords) - 1):\n",
" xsum += (coords[point][0] + coords[point + 1][0]) * ((coords[point][0]\n",
" * coords[point + 1][1]) - (coords[point + 1][0] * coords[point][1]))\n",
" ysum += (coords[point][1] + coords[point + 1][1]) * ((coords[point][0]\n",
" * coords[point + 1][1]) - (coords[point + 1][0] * coords[point][1]))\n",
"\n",
" cx = (1 / (6 * a)) * xsum\n",
" cy = (1 / (6 * a)) * ysum\n",
"\n",
" centroids.append((cx, cy))\n",
"\n",
"print(centroids)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
1 change: 1 addition & 0 deletions doc/devlog/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ This folder is a handy place to put Jupyter notebooks or other documents which h
| 2024-06-03.ipynb | Trevor | | Integration test: using dynamic geos to fetch Census data |
| 2024-06-05.ipynb | Meaghan | | A user manual and basic demonstrations of calling LODES ADRIOs |
| 2024-06-12.ipynb | Trevor | | Integration test: CSV file ADRIOs |
| 2024-06-12.ipynb | Trevor | ✓ | Integration test: Census ADRIOs |

## Contributing

Expand Down
1 change: 1 addition & 0 deletions epymorph/geo/adrio/census/adrio_census.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,6 +221,7 @@ def fetch_sf(self, scope: CensusScope) -> GeoDataFrame:
df = df.rename(columns={'GEOID': 'geoid'})

df = df[df['geoid'].isin(scope.get_node_ids())]
df = df.sort_values(by='geoid')

return GeoDataFrame(df)

Expand Down
Loading