-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodeling.py
202 lines (130 loc) · 6.69 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import pandas as pd
import numpy as np
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import seaborn as sns
from pprint import pprint
import unicodedata
import re
import json
import nltk
from nltk.tokenize.toktok import ToktokTokenizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from nltk.corpus import stopwords
#function to split data for Count models including bi/tri-grams models
def split_cv_models(df, stem_or_lem, ngram_range = (1,1)):
random_seed = 42
X = df[['stemmed', 'lemmatized']]
y = df.language
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify = y, test_size = .3, random_state = random_seed)
X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size = .5, random_state = random_seed)
cv = CountVectorizer(ngram_range = ngram_range)
X_train = cv.fit_transform(X_train[stem_or_lem])
X_val = cv.transform(X_val[stem_or_lem])
X_test = cv.transform(X_test[stem_or_lem])
y_train = y_train
return X_train, y_train, X_val, y_val, X_test, y_test
def shape_split_data():
X_train, y_train, X_val, y_val, X_test, y_test = split_cv_models(df,'lemmatized')
print(X_train.shape, X_val.shape, X_test.shape)
print(y_train.shape[0], y_val.shape[0], y_test.shape[0])
def baseline_model(df, stem_or_lem, ngram_range = (1,1)):
random_seed = 42
X_train, y_train, X_val, y_val, X_test, y_test = split_cv_models(df, stem_or_lem, ngram_range = (1,1))
baseline = (y_train =='others').mean()
print(f'The baseline accuracy is {baseline:.2%}')
def cv_model(df, stem_or_lem, ngram_range = (1,1)):
X_train, y_train, X_val, y_val, X_test, y_test = split_cv_models(df, stem_or_lem, ngram_range = (1,1))
# Count Vectorizer
bwtree = DecisionTreeClassifier(max_depth=12, random_state=123)
bwtree.fit(X_train, y_train)
print(f'Accuracy Score: {bwtree.score(X_val, y_val) * 100:.2f}%')
def bigram_model(df, stem_or_lem, ngram_range = (1,1)):
X2_train, y2_train, X2_val, y2_val, X2_test, y2_test = split_cv_models(df, stem_or_lem,
ngram_range = ngram_range)
# Bigram Count Vectorizer
bitree = DecisionTreeClassifier(max_depth=16, random_state=13)
bitree.fit(X2_train, y2_train)
print(f'Accuracy Score: {bitree.score(X2_val, y2_val) * 100:.2f}%')
def trigram_model(df, stem_or_lem, ngram_range = (1,1)):
X3_train, y3_train, X3_val, y3_val, X3_test, y3_test = split_cv_models(df, stem_or_lem,
ngram_range = ngram_range)
# trigram Count Vectorizer
titree = DecisionTreeClassifier(max_depth=12, random_state=123)
titree.fit(X3_train, y3_train)
print(f'Accuracy Score: {titree.score(X3_val, y3_val) * 100:.2f}%')
def split_tf_idf_data(df, stem_or_lem):
random_seed = 42
X = df[['stemmed', 'lemmatized']]
y = df.language
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify = y, test_size = .3, random_state = random_seed)
X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size = .5, random_state = random_seed)
tfidf = TfidfVectorizer()
X_train = tfidf.fit_transform(X_train[stem_or_lem])
X_val = tfidf.transform(X_val[stem_or_lem])
X_test = tfidf.transform(X_test[stem_or_lem])
return X_train, y_train, X_val, y_val, X_test, y_test
def tf_idf_model(df, stem_or_lem):
X_train, y_train, X_val, y_val, X_test, y_test = split_tf_idf_data(df, stem_or_lem)
# Count Vectorizer
tftree = DecisionTreeClassifier(max_depth=17, random_state=13)
tftree.fit(X_train, y_train)
print(f'Accuracy Score: {tftree.score(X_val, y_val) * 100:.2f}%')
def models(df, stem_or_lem):
random_state = 42
X_train, y_train, X_val, y_val, X_test, y_test = split_tf_idf_data(df, stem_or_lem)
#Tree model
tftree = DecisionTreeClassifier(max_depth = 2, random_state=random_state)
tftree.fit(X_train, y_train)
in_sample_accuracy = tftree.score(X_train, y_train)
out_of_sample_accuracy = tftree.score(X_val, y_val)
# KNN model
knn = KNeighborsClassifier(n_neighbors = 7)
knn = knn.fit(X_train, y_train)
accuracy_train = knn.score(X_train, y_train)
accuracy_val = knn.score(X_val, y_val)
#Logistic Regression
logit = LogisticRegression(random_state = random_state)
logit.fit(X_train, y_train)
acc_train = logit.score(X_train, y_train)
acc_val = logit.score(X_val, y_val)
#Random Forest
rf = RandomForestClassifier(max_depth = 2, min_samples_leaf = 9,
random_state = random_state, n_estimators = 200)
rf = rf.fit(X_train, y_train)
in_accuracy = rf.score(X_train, y_train)
out_accuracy = rf.score(X_val, y_val)
#Baseline
baseline_model(df, stem_or_lem)
baseline = (y_train =='others').mean()
dff = pd.DataFrame({'model': ['Decision Tree', 'KNN', 'Logistic Regression',
'Random Forest', 'Baseline'],
'train_accuracy': [in_sample_accuracy, accuracy_train,
acc_train, in_accuracy ,baseline],
'validate_accuracy': [out_of_sample_accuracy, accuracy_val,
acc_val, out_accuracy, baseline]})
return dff.sort_values('validate_accuracy', ascending = False)
def best_model(df, stem_or_lem):
random_state = 42
X_train, y_train, X_val, y_val, X_test, y_test = split_tf_idf_data(df, stem_or_lem)
knn = KNeighborsClassifier(n_neighbors = 7)
knn = knn.fit(X_train, y_train)
accuracy_train = knn.score(X_train, y_train)
accuracy_val = knn.score(X_val, y_val)
accuracy_test = knn.score(X_test, y_test)
#Baseline
baseline_model(df, stem_or_lem)
baseline = (y_train =='others').mean()
df = pd.DataFrame({'model': ['KNN','baseline'],
'train_accuracy': [accuracy_train, baseline],
'validate_accuracy': [accuracy_val, baseline],
'test_accuracy': [accuracy_test, baseline]})
return df