Skip to content

Commit 0c92947

Browse files
author
zhaoguangyuan123
committed
add FAQ
1 parent 2aa753f commit 0c92947

File tree

1 file changed

+54
-18
lines changed

1 file changed

+54
-18
lines changed

index.html

+54-18
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,28 @@
66
<script type="text/javascript" charset="utf-8" src="https://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
77
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
88

9+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css">
10+
11+
12+
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
13+
rel="stylesheet">
14+
15+
<link rel="stylesheet" href="./static/css/bulma.min.css">
16+
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
17+
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
18+
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
19+
<link rel="stylesheet"
20+
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
21+
<link rel="stylesheet" href="./static/css/index.css">
22+
<link rel="icon" href="./static/images/shail_logo.jpeg">
23+
24+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
25+
<script defer src="./static/js/fontawesome.all.min.js"></script>
26+
<script src="./static/js/bulma-carousel.min.js"></script>
27+
<script src="./static/js/bulma-slider.min.js"></script>
28+
<script src="./static/js/index.js"></script>
29+
30+
931
<style type="text/css">
1032
body {
1133
font-family: "Titillium Web", "HelveticaNeue-Light", "Helvetica Neue Light", "Helvetica Neue", Helvetica, Arial, "Lucida Grande", sans-serif;
@@ -146,6 +168,7 @@
146168
.material-icons {
147169
vertical-align: -6px;
148170
}
171+
149172
p {
150173
line-height: 1.25em;
151174
}
@@ -208,12 +231,12 @@
208231

209232
border-width: 0;
210233
outline: none;
211-
border-radius: 2px;
234+
border-radius: 4px;
212235

213-
background-color: #5364cc;
236+
background-color: #665f5c;
214237
color: white !important;
215-
font-size: 20px;
216-
width: 100px;
238+
font-size: 16px;
239+
/* width: 100px; */
217240
font-weight: 600;
218241
}
219242
.paper-btn-parent {
@@ -366,6 +389,7 @@
366389
<body>
367390
<div class="topnav" id="myTopnav">
368391
</div>
392+
369393
<div class="container">
370394
<div class="paper-title">
371395
<h1>
@@ -397,21 +421,25 @@ <h1>
397421
<div style="clear: both">
398422
<div class="paper-btn-parent">
399423
<a class="paper-btn" href="https://arxiv.org/abs/2309.17343">
400-
<span class="material-icons"> description </span>
401-
Arxiv
424+
<!-- <span class="material-icons"> description </span> -->
425+
<i class="ai ai-arxiv"></i>
426+
arXiv
402427
</a>
403428
<!-- <a class="paper-btn" href="">
404429
<span class="material-icons"> description </span>
405430
SAversion
406431
</a> -->
407432
<div class="paper-btn-coming-soon">
408433
<a class="paper-btn" href="https://github.com/Neural-Litho/Neural_Lithography">
409-
<span class="material-icons"> code </span>
410-
Code
434+
<!-- <span class="material-icons"> code </span> -->
435+
<span class="icon">
436+
<i class="fab fa-github"></i>
437+
</span>
438+
code (Coming soon)
411439
</a>
412440
</div>
413441
</div></div>
414-
</div>
442+
415443

416444
<section id="teaser-image">
417445
<center>
@@ -443,13 +471,13 @@ <h2>Abstract</h2>
443471
</section>
444472
<section id="method"/>
445473
<hr>
446-
<h2>What we do?</h2>
474+
<h2>What We Contribute?</h2>
447475
<b>TL;DR:</b> A real2sim pipeline to quantitatively construct a high-fidelity neural photolithography simulator and a design-fabrication co-optimization framework to bridge the design-to-manufacturing gap in computational optics.
448476

449477
<h3><u>This work identifies two obstacles in computational optics: </u></h3>
450478

451479
<h4>1⃣ What is the "elephant in the room" in Computational Lithography?</h4>
452-
- <b>high-fidelity photolithography simulator</b> | "No matter how good we can advance the computational (inverse) lithography algorithm, the performance bound is grounded in the fidelity of the lithography simulator."
480+
- <b>High-fidelity photolithography simulator</b> | "No matter how good we can advance the computational (inverse) lithography algorithm, the performance bound is grounded in the fidelity of the lithography simulator."
453481

454482
<h4>2⃣ What hinders the progress of computational optics?</h4>
455483
- One should be the <b>Design to Manufacturing gap.</b> |
@@ -609,7 +637,7 @@ <h4> Results on multi-level diffractive lenses which can be used in direct and c
609637
<center>
610638
<figure style="width: 100%;">
611639
<a>
612-
<img width="80%" src="asserts/ imaging.png">
640+
<img width="60%" src="asserts/ imaging.png">
613641
</a>
614642
<p class="caption" style="margin-bottom: 24px;"><br>
615643
<b>Imaging performance with the designed MDL</b>. A: Sketch of the setup for characterizing the performance of MDL. B: We show our measured PSFs and direct imaging results (i.e., w/o deconvolution) corresponding to design w/o and w/ PBL litho model. The end of this row shows the line profiles of PSFs designed w/o or w/ different litho models. C: Computational/Indirect Imaging result of the MDL. The lower right compares the Fourier spectrum of the designed PSFs. <b>Our method's design enhances the contrast in direct imaging (B) and the high-frequency imaging performance in computational imaging (C)</b>.
@@ -638,12 +666,20 @@ <h4> Results on multi-level diffractive lenses which can be used in direct and c
638666
<section id="faq">
639667
<h2>Frequently asked questions (FAQ)</h2>
640668
<hr>
641-
<!-- <div class="flex-row">
642-
<p>
643-
The hierarchical VAE architecture of LION is crucial for scalability and capturing diverse shape data. It allows the model to learn a multimodal distribution over different categories without the need for class-conditioning. We find that the shape latent
644-
variables capture global shape, while the latent points model details. We validate this by fixing the shape variable to different values and only sampling different latent points.
645-
</p>
646-
</div> -->
669+
670+
<h4>1. Does this work provide a 'one-size-fits-all' litho model?</h4>
671+
<b>NO</b>. Our goal isn't to learn a model that generalizes across different lithography types or different modalities of a type. Instead, we present a pipeline on how to OVERFIT to a single lithography system with a specific photoresist and post-processing procedure.
672+
673+
<h4>2. What are the assumptions for the applicability of the learned neural litho model?</h4>
674+
1⃣ No single lithography process can be perfectly represented by one white-box model. Factors like optical misalignment, hardware tolerances, differences in conditions, and even temperature and humidity can introduce variability.
675+
2⃣ If a specific lithography system and photoresist remain consistent over time, and once digitalized remain stable, a learned gray-box simulator trained on data from that environment should be effective.
676+
677+
<!-- <div class="flex-row">
678+
<p>
679+
The hierarchical VAE architecture of LION is crucial for scalability and capturing diverse shape data. It allows the model to learn a multimodal distribution over different categories without the need for class-conditioning. We find that the shape latent
680+
variables capture global shape, while the latent points model details. We validate this by fixing the shape variable to different values and only sampling different latent points.
681+
</p>
682+
</div> -->
647683

648684
<section id="bibtex">
649685
<h2>Citation</h2>

0 commit comments

Comments
 (0)