|
6 | 6 | <script type="text/javascript" charset="utf-8" src="https://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
|
7 | 7 | <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
8 | 8 |
|
| 9 | +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css"> |
| 10 | + |
| 11 | + |
| 12 | +<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" |
| 13 | + rel="stylesheet"> |
| 14 | + |
| 15 | +<link rel="stylesheet" href="./static/css/bulma.min.css"> |
| 16 | +<link rel="stylesheet" href="./static/css/bulma-carousel.min.css"> |
| 17 | +<link rel="stylesheet" href="./static/css/bulma-slider.min.css"> |
| 18 | +<link rel="stylesheet" href="./static/css/fontawesome.all.min.css"> |
| 19 | +<link rel="stylesheet" |
| 20 | + href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"> |
| 21 | +<link rel="stylesheet" href="./static/css/index.css"> |
| 22 | +<link rel="icon" href="./static/images/shail_logo.jpeg"> |
| 23 | + |
| 24 | +<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> |
| 25 | +<script defer src="./static/js/fontawesome.all.min.js"></script> |
| 26 | +<script src="./static/js/bulma-carousel.min.js"></script> |
| 27 | +<script src="./static/js/bulma-slider.min.js"></script> |
| 28 | +<script src="./static/js/index.js"></script> |
| 29 | + |
| 30 | + |
9 | 31 | <style type="text/css">
|
10 | 32 | body {
|
11 | 33 | font-family: "Titillium Web", "HelveticaNeue-Light", "Helvetica Neue Light", "Helvetica Neue", Helvetica, Arial, "Lucida Grande", sans-serif;
|
|
146 | 168 | .material-icons {
|
147 | 169 | vertical-align: -6px;
|
148 | 170 | }
|
| 171 | + |
149 | 172 | p {
|
150 | 173 | line-height: 1.25em;
|
151 | 174 | }
|
|
208 | 231 |
|
209 | 232 | border-width: 0;
|
210 | 233 | outline: none;
|
211 |
| - border-radius: 2px; |
| 234 | + border-radius: 4px; |
212 | 235 |
|
213 |
| - background-color: #5364cc; |
| 236 | + background-color: #665f5c; |
214 | 237 | color: white !important;
|
215 |
| - font-size: 20px; |
216 |
| - width: 100px; |
| 238 | + font-size: 16px; |
| 239 | + /* width: 100px; */ |
217 | 240 | font-weight: 600;
|
218 | 241 | }
|
219 | 242 | .paper-btn-parent {
|
|
366 | 389 | <body>
|
367 | 390 | <div class="topnav" id="myTopnav">
|
368 | 391 | </div>
|
| 392 | + |
369 | 393 | <div class="container">
|
370 | 394 | <div class="paper-title">
|
371 | 395 | <h1>
|
@@ -397,21 +421,25 @@ <h1>
|
397 | 421 | <div style="clear: both">
|
398 | 422 | <div class="paper-btn-parent">
|
399 | 423 | <a class="paper-btn" href="https://arxiv.org/abs/2309.17343">
|
400 |
| - <span class="material-icons"> description </span> |
401 |
| - Arxiv |
| 424 | + <!-- <span class="material-icons"> description </span> --> |
| 425 | + <i class="ai ai-arxiv"></i> |
| 426 | + arXiv |
402 | 427 | </a>
|
403 | 428 | <!-- <a class="paper-btn" href="">
|
404 | 429 | <span class="material-icons"> description </span>
|
405 | 430 | SAversion
|
406 | 431 | </a> -->
|
407 | 432 | <div class="paper-btn-coming-soon">
|
408 | 433 | <a class="paper-btn" href="https://github.com/Neural-Litho/Neural_Lithography">
|
409 |
| - <span class="material-icons"> code </span> |
410 |
| - Code |
| 434 | + <!-- <span class="material-icons"> code </span> --> |
| 435 | + <span class="icon"> |
| 436 | + <i class="fab fa-github"></i> |
| 437 | + </span> |
| 438 | + code (Coming soon) |
411 | 439 | </a>
|
412 | 440 | </div>
|
413 | 441 | </div></div>
|
414 |
| - </div> |
| 442 | + |
415 | 443 |
|
416 | 444 | <section id="teaser-image">
|
417 | 445 | <center>
|
@@ -443,13 +471,13 @@ <h2>Abstract</h2>
|
443 | 471 | </section>
|
444 | 472 | <section id="method"/>
|
445 | 473 | <hr>
|
446 |
| - <h2>What we do?</h2> |
| 474 | + <h2>What We Contribute?</h2> |
447 | 475 | <b>TL;DR:</b> A real2sim pipeline to quantitatively construct a high-fidelity neural photolithography simulator and a design-fabrication co-optimization framework to bridge the design-to-manufacturing gap in computational optics.
|
448 | 476 |
|
449 | 477 | <h3><u>This work identifies two obstacles in computational optics: </u></h3>
|
450 | 478 |
|
451 | 479 | <h4>1⃣ What is the "elephant in the room" in Computational Lithography?</h4>
|
452 |
| - - <b>high-fidelity photolithography simulator</b> | "No matter how good we can advance the computational (inverse) lithography algorithm, the performance bound is grounded in the fidelity of the lithography simulator." |
| 480 | + - <b>High-fidelity photolithography simulator</b> | "No matter how good we can advance the computational (inverse) lithography algorithm, the performance bound is grounded in the fidelity of the lithography simulator." |
453 | 481 |
|
454 | 482 | <h4>2⃣ What hinders the progress of computational optics?</h4>
|
455 | 483 | - One should be the <b>Design to Manufacturing gap.</b> |
|
@@ -609,7 +637,7 @@ <h4> Results on multi-level diffractive lenses which can be used in direct and c
|
609 | 637 | <center>
|
610 | 638 | <figure style="width: 100%;">
|
611 | 639 | <a>
|
612 |
| - <img width="80%" src="asserts/ imaging.png"> |
| 640 | + <img width="60%" src="asserts/ imaging.png"> |
613 | 641 | </a>
|
614 | 642 | <p class="caption" style="margin-bottom: 24px;"><br>
|
615 | 643 | <b>Imaging performance with the designed MDL</b>. A: Sketch of the setup for characterizing the performance of MDL. B: We show our measured PSFs and direct imaging results (i.e., w/o deconvolution) corresponding to design w/o and w/ PBL litho model. The end of this row shows the line profiles of PSFs designed w/o or w/ different litho models. C: Computational/Indirect Imaging result of the MDL. The lower right compares the Fourier spectrum of the designed PSFs. <b>Our method's design enhances the contrast in direct imaging (B) and the high-frequency imaging performance in computational imaging (C)</b>.
|
@@ -638,12 +666,20 @@ <h4> Results on multi-level diffractive lenses which can be used in direct and c
|
638 | 666 | <section id="faq">
|
639 | 667 | <h2>Frequently asked questions (FAQ)</h2>
|
640 | 668 | <hr>
|
641 |
| - <!-- <div class="flex-row"> |
642 |
| - <p> |
643 |
| - The hierarchical VAE architecture of LION is crucial for scalability and capturing diverse shape data. It allows the model to learn a multimodal distribution over different categories without the need for class-conditioning. We find that the shape latent |
644 |
| - variables capture global shape, while the latent points model details. We validate this by fixing the shape variable to different values and only sampling different latent points. |
645 |
| - </p> |
646 |
| - </div> --> |
| 669 | + |
| 670 | + <h4>1. Does this work provide a 'one-size-fits-all' litho model?</h4> |
| 671 | + <b>NO</b>. Our goal isn't to learn a model that generalizes across different lithography types or different modalities of a type. Instead, we present a pipeline on how to OVERFIT to a single lithography system with a specific photoresist and post-processing procedure. |
| 672 | + |
| 673 | + <h4>2. What are the assumptions for the applicability of the learned neural litho model?</h4> |
| 674 | + 1⃣ No single lithography process can be perfectly represented by one white-box model. Factors like optical misalignment, hardware tolerances, differences in conditions, and even temperature and humidity can introduce variability. |
| 675 | + 2⃣ If a specific lithography system and photoresist remain consistent over time, and once digitalized remain stable, a learned gray-box simulator trained on data from that environment should be effective. |
| 676 | + |
| 677 | + <!-- <div class="flex-row"> |
| 678 | + <p> |
| 679 | + The hierarchical VAE architecture of LION is crucial for scalability and capturing diverse shape data. It allows the model to learn a multimodal distribution over different categories without the need for class-conditioning. We find that the shape latent |
| 680 | + variables capture global shape, while the latent points model details. We validate this by fixing the shape variable to different values and only sampling different latent points. |
| 681 | + </p> |
| 682 | + </div> --> |
647 | 683 |
|
648 | 684 | <section id="bibtex">
|
649 | 685 | <h2>Citation</h2>
|
|
0 commit comments