From 968fbe1cdc6cdb3eac5209ef69885703949a7b43 Mon Sep 17 00:00:00 2001 From: Thibaud Coroller <14895385+tcoroller@users.noreply.github.com> Date: Wed, 26 Feb 2025 13:51:30 -0500 Subject: [PATCH] added code factor score --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index bad22aa..9316044 100644 --- a/README.md +++ b/README.md @@ -16,11 +16,13 @@ https://anaconda.org/conda-forge/torchsurv) ![CodeQC](https://github.com/Novartis/torchsurv/actions/workflows/codeqc.yml/badge.svg?branch=main) ![Docs](https://github.com/Novartis/torchsurv/actions/workflows/docs.yml/badge.svg?branch=main) +[![CodeFactor](https://www.codefactor.io/repository/github/novartis/torchsurv/badge/main)](https://www.codefactor.io/repository/github/novartis/torchsurv/overview/main) [![JOSS](https://joss.theoj.org/papers/02d7496da2b9cc34f9a6e04cabf2298d/status.svg)](https://joss.theoj.org/papers/02d7496da2b9cc34f9a6e04cabf2298d) [![License](https://img.shields.io/badge/License-MIT-black)](https://opensource.org/licenses/MIT) [![Documentation](https://img.shields.io/badge/GithubPage-Sphinx-blue)](https://opensource.nibr.com/torchsurv/) + `TorchSurv` is a Python package that serves as a companion tool to perform deep survival modeling within the `PyTorch` environment. Unlike existing libraries that impose specific parametric forms on users, `TorchSurv` enables the use of custom `PyTorch`-based deep survival models. With its lightweight design, minimal input requirements, full `PyTorch` backend, and freedom from restrictive survival model parameterizations, `TorchSurv` facilitates efficient survival model implementation, particularly beneficial for high-dimensional input data scenarios. If you find this repository useful, please consider giving a star! ⭐