-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdeep_models.py
202 lines (155 loc) · 7.27 KB
/
deep_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class Downsample(nn.Module):
r""" Downsampling layer that applies anti-aliasing filters.
For example, order=0 corresponds to a box filter (or average downsampling
-- this is the same as AvgPool in Pytorch), order=1 to a triangle filter
(or linear downsampling), order=2 to cubic downsampling, and so on.
See https://richzhang.github.io/antialiased-cnns/ for more details.
"""
def __init__(self, channels=None, factor=2, order=1):
super(Downsample, self).__init__()
assert factor > 1, "Downsampling factor must be > 1"
self.stride = factor
self.channels = channels
self.order = order
# Figure out padding and check params make sense
# The padding is given by order*(factor-1)/2
# so order*(factor-1) must be divisible by 2
total_padding = order * (factor - 1)
assert total_padding % 2 == 0, (
"Misspecified downsampling parameters."
"Downsampling factor and order must be such that order*(factor-1) is divisible by 2"
)
self.padding = int(order * (factor - 1) / 2)
box_kernel = np.ones(factor)
kernel = np.ones(factor)
for _ in range(order):
kernel = np.convolve(kernel, box_kernel)
kernel /= np.sum(kernel)
kernel = torch.Tensor(kernel)
self.register_buffer('kernel', kernel[None, None, :].repeat((channels, 1, 1)))
def forward(self, x):
return F.conv1d(x, self.kernel, stride=self.stride, padding=self.padding, groups=x.shape[1])
class ResBlock(nn.Module):
r""" Basic bulding block in Resnets:
bn-relu-conv-bn-relu-conv
/ \
x --------------------------(+)->
"""
def __init__(
self, in_channels, out_channels,
kernel_size=3, stride=1, padding=1,
):
super(ResBlock, self).__init__()
self.bn1 = nn.BatchNorm1d(in_channels)
self.bn2 = nn.BatchNorm1d(out_channels)
self.conv1 = nn.Conv1d(in_channels, out_channels,
kernel_size, stride, padding,
bias=False, padding_mode='circular')
self.conv2 = nn.Conv1d(out_channels, out_channels,
kernel_size, stride, padding,
bias=False, padding_mode='circular')
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
x = self.relu(self.bn1(x))
x = self.conv1(x)
x = self.relu(self.bn2(x))
x = self.conv2(x)
x = x + identity
return x
class Resnet(nn.Module):
r""" The general form of the architecture can be described as follows:
x->[conv-[ResBlock]^m-bn-relu-down]^n->y
In other words:
bn-relu-conv-bn-relu-conv bn-relu-conv-bn-relu-conv
/ \ / \
x->conv --------------------------(+)-bn-relu-down->conv --------------------------(+)-bn-relu-down-> ...
"""
def __init__(self,
n_channels, outsize,
n_filters_list,
kernel_size_list,
n_resblocks_list,
resblock_kernel_size_list,
downfactor_list,
downorder_list,
drop1, drop2,
fc_size,
is_cnnlstm=False):
super(Resnet, self).__init__()
self.is_cnnlstm = is_cnnlstm
# Broadcast if single number provided instead of list
if isinstance(kernel_size_list, int):
kernel_size_list = [kernel_size_list] * len(downfactor_list)
if isinstance(resblock_kernel_size_list, int):
resblock_kernel_size_list = [resblock_kernel_size_list] * len(downfactor_list)
if isinstance(n_resblocks_list, int):
n_resblocks_list = [n_resblocks_list] * len(downfactor_list)
cfg = zip(n_filters_list,
kernel_size_list,
n_resblocks_list,
resblock_kernel_size_list,
downfactor_list,
downorder_list)
resnet = nn.Sequential()
# Input channel dropout
resnet.add_module('input_dropout', nn.Dropout2d(drop1))
# Main layers
in_channels = n_channels
for i, layer_params in enumerate(cfg):
out_channels, kernel_size, n_resblocks, resblock_kernel_size, downfactor, downorder = layer_params
resnet.add_module(f'layer{i+1}', Resnet.make_layer(in_channels, out_channels,
kernel_size, n_resblocks, resblock_kernel_size,
downfactor, downorder))
in_channels = out_channels
if not is_cnnlstm:
# Fully-connected layer
resnet.add_module('fc', nn.Sequential(nn.Dropout2d(drop2),
nn.Conv1d(in_channels, fc_size, 1, 1, 0, bias=False),
nn.ReLU(True)))
# Final linear layer
resnet.add_module('final', nn.Conv1d(fc_size, outsize, 1, 1, 0, bias=False))
else:
self.lstm = nn.LSTM(in_channels, int(fc_size // 2), batch_first=True, bidirectional=True)
self.final = nn.Linear(fc_size, outsize, bias=False)
self.resnet = resnet
@staticmethod
def make_layer(in_channels, out_channels,
kernel_size, n_resblocks, resblock_kernel_size,
downfactor, downorder):
r""" Basic layer in Resnets:
x->[conv-[ResBlock]^m-bn-relu-down]->
In other words:
bn-relu-conv-bn-relu-conv
/ \
x->conv --------------------------(+)-bn-relu-down->
"""
assert kernel_size % 2, "Only odd number for conv_kernel_size supported"
assert resblock_kernel_size % 2, "Only odd number for resblock_kernel_size supported"
padding = int((kernel_size - 1) / 2)
resblock_padding = int((resblock_kernel_size - 1) / 2)
modules = [nn.Conv1d(in_channels, out_channels,
kernel_size, 1, padding,
bias=False, padding_mode='circular')]
for _ in range(n_resblocks):
modules.append(ResBlock(out_channels, out_channels,
resblock_kernel_size, 1, resblock_padding))
modules.append(nn.BatchNorm1d(out_channels))
modules.append(nn.ReLU(True))
modules.append(Downsample(out_channels, downfactor, downorder))
return nn.Sequential(*modules)
def forward(self, x):
if self.is_cnnlstm:
bsize, seqlen, _, _ = x.shape
x = x.view(-1, x.shape[2], x.shape[3]) # merge batch and sequence axes
feats = self.resnet(x).view(bsize, seqlen, -1)
lstm_feats, (h_n, c_n) = self.lstm(feats)
lstm_feats = lstm_feats.reshape(-1, lstm_feats.shape[2]) # merge batch and sequence axes
y = self.final(lstm_feats).view(bsize, seqlen, -1)
else:
y = self.resnet(x).view(x.shape[0], -1)
return y