forked from taichi-dev/taichi_dem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdem.py
211 lines (166 loc) · 5.49 KB
/
dem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import taichi as ti
import math
import os
ti.init(arch=ti.gpu)
vec = ti.math.vec2
SAVE_FRAMES = False
window_size = 1024 # Number of pixels of the window
n = 8192 # Number of grains
density = 100.0
stiffness = 8e3
restitution_coef = 0.001
gravity = -9.81
dt = 0.0001 # Larger dt might lead to unstable results.
substeps = 60
@ti.dataclass
class Grain:
p: vec # Position
m: ti.f32 # Mass
r: ti.f32 # Radius
v: vec # Velocity
a: vec # Acceleration
f: vec # Force
gf = Grain.field(shape=(n, ))
grid_n = 128
grid_size = 1.0 / grid_n # Simulation domain of size [0, 1]
print(f"Grid size: {grid_n}x{grid_n}")
grain_r_min = 0.002
grain_r_max = 0.003
assert grain_r_max * 2 < grid_size
@ti.kernel
def init():
for i in gf:
# Spread grains in a restricted area.
l = i * grid_size
padding = 0.1
region_width = 1.0 - padding * 2
pos = vec(l % region_width + padding + grid_size * ti.random() * 0.2,
l // region_width * grid_size + 0.3)
gf[i].p = pos
gf[i].r = ti.random() * (grain_r_max - grain_r_min) + grain_r_min
gf[i].m = density * math.pi * gf[i].r**2
@ti.kernel
def update():
for i in gf:
a = gf[i].f / gf[i].m
gf[i].v += (gf[i].a + a) * dt / 2.0
gf[i].p += gf[i].v * dt + 0.5 * a * dt**2
gf[i].a = a
@ti.kernel
def apply_bc():
bounce_coef = 0.3 # Velocity damping
for i in gf:
x = gf[i].p[0]
y = gf[i].p[1]
if y - gf[i].r < 0:
gf[i].p[1] = gf[i].r
gf[i].v[1] *= -bounce_coef
elif y + gf[i].r > 1.0:
gf[i].p[1] = 1.0 - gf[i].r
gf[i].v[1] *= -bounce_coef
if x - gf[i].r < 0:
gf[i].p[0] = gf[i].r
gf[i].v[0] *= -bounce_coef
elif x + gf[i].r > 1.0:
gf[i].p[0] = 1.0 - gf[i].r
gf[i].v[0] *= -bounce_coef
@ti.func
def resolve(i, j):
rel_pos = gf[j].p - gf[i].p
dist = ti.sqrt(rel_pos[0]**2 + rel_pos[1]**2)
delta = -dist + gf[i].r + gf[j].r # delta = d - 2 * r
if delta > 0: # in contact
normal = rel_pos / dist
f1 = normal * delta * stiffness
# Damping force
M = (gf[i].m * gf[j].m) / (gf[i].m + gf[j].m)
K = stiffness
C = 2. * (1. / ti.sqrt(1. + (math.pi / ti.log(restitution_coef))**2)
) * ti.sqrt(K * M)
V = (gf[j].v - gf[i].v) * normal
f2 = C * V * normal
gf[i].f += f2 - f1
gf[j].f -= f2 - f1
list_head = ti.field(dtype=ti.i32, shape=grid_n * grid_n)
list_cur = ti.field(dtype=ti.i32, shape=grid_n * grid_n)
list_tail = ti.field(dtype=ti.i32, shape=grid_n * grid_n)
grain_count = ti.field(dtype=ti.i32,
shape=(grid_n, grid_n),
name="grain_count")
column_sum = ti.field(dtype=ti.i32, shape=grid_n, name="column_sum")
prefix_sum = ti.field(dtype=ti.i32, shape=(grid_n, grid_n), name="prefix_sum")
particle_id = ti.field(dtype=ti.i32, shape=n, name="particle_id")
@ti.kernel
def contact(gf: ti.template()):
'''
Handle the collision between grains.
'''
for i in gf:
gf[i].f = vec(0., gravity * gf[i].m) # Apply gravity.
grain_count.fill(0)
for i in range(n):
grid_idx = ti.floor(gf[i].p * grid_n, int)
grain_count[grid_idx] += 1
for i in range(grid_n):
sum = 0
for j in range(grid_n):
sum += grain_count[i, j]
column_sum[i] = sum
prefix_sum[0, 0] = 0
ti.loop_config(serialize=True)
for i in range(1, grid_n):
prefix_sum[i, 0] = prefix_sum[i - 1, 0] + column_sum[i - 1]
for i in range(grid_n):
for j in range(grid_n):
if j == 0:
prefix_sum[i, j] += grain_count[i, j]
else:
prefix_sum[i, j] = prefix_sum[i, j - 1] + grain_count[i, j]
linear_idx = i * grid_n + j
list_head[linear_idx] = prefix_sum[i, j] - grain_count[i, j]
list_cur[linear_idx] = list_head[linear_idx]
list_tail[linear_idx] = prefix_sum[i, j]
for i in range(n):
grid_idx = ti.floor(gf[i].p * grid_n, int)
linear_idx = grid_idx[0] * grid_n + grid_idx[1]
grain_location = ti.atomic_add(list_cur[linear_idx], 1)
particle_id[grain_location] = i
# Brute-force collision detection
'''
for i in range(n):
for j in range(i + 1, n):
resolve(i, j)
'''
# Fast collision detection
for i in range(n):
grid_idx = ti.floor(gf[i].p * grid_n, int)
x_begin = max(grid_idx[0] - 1, 0)
x_end = min(grid_idx[0] + 2, grid_n)
y_begin = max(grid_idx[1] - 1, 0)
y_end = min(grid_idx[1] + 2, grid_n)
for neigh_i in range(x_begin, x_end):
for neigh_j in range(y_begin, y_end):
neigh_linear_idx = neigh_i * grid_n + neigh_j
for p_idx in range(list_head[neigh_linear_idx],
list_tail[neigh_linear_idx]):
j = particle_id[p_idx]
if i < j:
resolve(i, j)
init()
gui = ti.GUI('Taichi DEM', (window_size, window_size))
step = 0
if SAVE_FRAMES:
os.makedirs('output', exist_ok=True)
while gui.running:
for s in range(substeps):
update()
apply_bc()
contact(gf)
pos = gf.p.to_numpy()
r = gf.r.to_numpy() * window_size
gui.circles(pos, radius=r)
if SAVE_FRAMES:
gui.show(f'output/{step:06d}.png')
else:
gui.show()
step += 1