forked from ModelTC/lightllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi_server.py
executable file
·554 lines (467 loc) · 20.4 KB
/
api_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# Adapted from vllm/entrypoints/api_server.py
# of the vllm-project/vllm GitHub repository.
#
# Copyright 2023 ModelTC Team
# Copyright 2023 vLLM Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import collections
import time
import torch
import uvloop
import sys
import os
import rpyc
from .build_prompt import build_prompt
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
import argparse
import json
from http import HTTPStatus
import uuid
import multiprocessing as mp
from typing import AsyncGenerator
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import Response, StreamingResponse, JSONResponse
import uvicorn
from .sampling_params import SamplingParams
from .multimodal_params import MultimodalParams
from .httpserver.manager import HttpServerManager
from .detokenization.manager import start_detokenization_process
from .router.manager import start_router_process
from .embed_cache.manager import start_cache_manager
from .metrics.manager import start_metric_manager
from .visualserver.manager import start_visual_process
from .req_id_generator import ReqIDGenerator
from .api_tgi import tgi_generate_impl, tgi_generate_stream_impl
from .api_lightllm import lightllm_generate, lightllm_generate_stream
from lightllm.utils.net_utils import alloc_can_use_network_port
from lightllm.utils.start_utils import start_submodule_processes
from .api_models import (
ChatCompletionRequest,
UsageInfo,
ChatMessage,
ChatCompletionResponseChoice,
ChatCompletionResponse,
DeltaMessage,
ChatCompletionStreamResponse,
ChatCompletionStreamResponseChoice,
)
from lightllm.utils.log_utils import init_logger
from prometheus_client import generate_latest
from lightllm.server.metrics.manager import MetricClient
logger = init_logger(__name__)
TIMEOUT_KEEP_ALIVE = 5 # seconds.
g_id_gen = ReqIDGenerator()
app = FastAPI()
server = uvicorn.Server(uvicorn.Config(app))
isFirst = True
metric_client = None
def first_set_handle_loop():
global isFirst
if isFirst:
loop = asyncio.get_event_loop()
loop.create_task(httpserver_manager.handle_loop())
isFirst = False
return
def create_error_response(status_code: HTTPStatus, message: str) -> JSONResponse:
metric_client.counter_inc("lightllm_request_failure")
return JSONResponse({"message": message}, status_code=status_code.value)
@app.get("/liveness")
@app.post("/liveness")
def liveness():
return {"status": "ok"}
@app.get("/readiness")
@app.post("/readiness")
def readiness():
return {"status": "ok"}
@app.get("/healthz")
@app.get("/health")
@app.head("/health")
async def healthcheck(request: Request):
first_set_handle_loop()
if os.environ.get("DEBUG_HEALTHCHECK_RETURN_FAIL") == "true":
return JSONResponse({"message": "Error"}, status_code=404)
from lightllm.utils.health_check import health_check
if health_check(httpserver_manager, g_id_gen, request):
return JSONResponse({"message": "Ok"}, status_code=200)
else:
return JSONResponse({"message": "Error"}, status_code=404)
@app.get("/token_load")
async def token_load(request: Request):
return JSONResponse(
{
# 当前使用token量,估计的负载
"current_load": float(shared_token_load.get_current_load()),
# 朴素估计的负载,简单将当前请求的输入和输出长度想加得到,目前已未使用,其值与dynamic_max_load一样。
"logical_max_load": float(shared_token_load.get_logical_max_load()),
# 动态估计的最大负载,考虑请求中途退出的情况的负载
"dynamic_max_load": float(shared_token_load.get_dynamic_max_load()),
},
status_code=200,
)
@app.post("/generate")
async def generate(request: Request) -> Response:
first_set_handle_loop()
try:
return await g_generate_func(request, g_id_gen, httpserver_manager)
except Exception as e:
return create_error_response(HTTPStatus.EXPECTATION_FAILED, str(e))
@app.post("/generate_stream")
async def generate_stream(request: Request) -> Response:
first_set_handle_loop()
try:
return await g_generate_stream_func(request, g_id_gen, httpserver_manager)
except Exception as e:
return create_error_response(HTTPStatus.EXPECTATION_FAILED, str(e))
@app.post("/")
async def compat_generate(request: Request) -> Response:
request_dict = await request.json()
stream = request_dict.pop("stream", False)
if stream:
return await generate_stream(request)
else:
return await generate(request)
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def chat_completions(request: ChatCompletionRequest, raw_request: Request) -> Response:
first_set_handle_loop()
if request.logit_bias is not None:
return create_error_response(
HTTPStatus.BAD_REQUEST,
"The logit_bias parameter is not currently supported",
)
if request.n > 1:
return create_error_response(HTTPStatus.BAD_REQUEST, "The n parameter currently only supports 1")
if request.function_call != "none":
return create_error_response(HTTPStatus.BAD_REQUEST, "The function call feature is not supported")
created_time = int(time.time())
prompt = await build_prompt(request)
sampling_params = SamplingParams(
do_sample=request.do_sample,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
ignore_eos=request.ignore_eos,
max_new_tokens=request.max_tokens,
stop_sequences=request.stop,
)
sampling_params.verify()
multimodal_params = MultimodalParams(images=[])
request_id = f"chatcmpl-{uuid.uuid4().hex}"
results_generator = httpserver_manager.generate(
prompt, sampling_params, request_id, multimodal_params, request=raw_request
)
# Non-streaming case
if not request.stream:
final_output = []
prompt_tokens = -1
completion_tokens = 0
async for sub_req_id, request_output, metadata, _ in results_generator:
completion_tokens += 1
if prompt_tokens == -1:
prompt_tokens = metadata["prompt_tokens"]
final_output.append(request_output)
usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
chat_message = ChatMessage(role="assistant", content="".join(final_output))
choice = ChatCompletionResponseChoice(index=0, message=chat_message)
resp = ChatCompletionResponse(
id=request_id, created=created_time, model=request.model, choices=[choice], usage=usage
)
return resp
# Streaming case
async def stream_results() -> AsyncGenerator[bytes, None]:
async for sub_req_id, request_output, metadata, _ in results_generator:
delta_message = DeltaMessage(role="assistant", content=request_output)
stream_choice = ChatCompletionStreamResponseChoice(index=0, delta=delta_message)
stream_resp = ChatCompletionStreamResponse(
id=request_id,
created=created_time,
model=request.model,
choices=[stream_choice],
)
yield ("data: " + stream_resp.json(ensure_ascii=False) + "\n\n").encode("utf-8")
async def abort_request() -> None:
await httpserver_manager.abort(request_id)
background_tasks = BackgroundTasks()
# Abort the request if the client disconnects.
background_tasks.add_task(abort_request)
return StreamingResponse(stream_results(), media_type="text/event-stream", background=background_tasks)
@app.get("/tokens")
@app.post("/tokens")
async def tokens(request: Request):
try:
request_dict = await request.json()
prompt = request_dict.pop("text")
return JSONResponse({"ntokens": httpserver_manager.tokens(prompt)}, status_code=200)
except Exception as e:
return create_error_response(HTTPStatus.EXPECTATION_FAILED, f"error: {str(e)}")
@app.get("/metrics")
async def metrics() -> Response:
data = await metric_client.generate_latest()
response = Response(data)
response.mimetype = "text/plain"
return response
@app.on_event("shutdown")
async def shutdown():
logger.info("Received signal to shutdown. Performing graceful shutdown...")
await asyncio.sleep(3)
logger.info("Graceful shutdown completed.")
# 杀掉所有子进程
import psutil
import signal
parent = psutil.Process(os.getpid())
children = parent.children(recursive=True)
for child in children:
os.kill(child.pid, signal.SIGKILL)
server.should_exit = True
return
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--model_dir",
type=str,
default=None,
help="the model weight dir path, the app will load config, weights and tokenizer from this dir",
)
parser.add_argument(
"--tokenizer_mode",
type=str,
default="slow",
help="""tokenizer load mode, can be slow, fast or auto, slow mode load fast but run slow,
slow mode is good for debug and test, fast mode get best performance, auto mode will
try to use fast mode, if failed will use slow mode""",
)
parser.add_argument(
"--load_way",
type=str,
default="HF",
help="""the way of loading model weights, the default is HF(Huggingface format), llama also supports
DS(Deepspeed)""",
)
parser.add_argument(
"--max_total_token_num",
type=int,
default=6000,
help="the total token nums the gpu and model can support, equals = max_batch * (input_len + output_len)",
)
parser.add_argument(
"--batch_max_tokens",
type=int,
default=None,
help="max tokens num for new cat batch, it control prefill batch size to Preventing OOM",
)
parser.add_argument("--eos_id", nargs="+", type=int, default=[2], help="eos stop token id")
parser.add_argument(
"--running_max_req_size", type=int, default=1000, help="the max size for forward requests in the same time"
)
parser.add_argument("--tp", type=int, default=1, help="model tp parral size, the default is 1")
parser.add_argument("--max_req_input_len", type=int, default=2048, help="the max value for req input tokens num")
parser.add_argument(
"--max_req_total_len", type=int, default=2048 + 1024, help="the max value for req_input_len + req_output_len"
)
parser.add_argument(
"--nccl_port", type=int, default=28765, help="the nccl_port to build a distributed environment for PyTorch"
)
parser.add_argument(
"--mode",
type=str,
default=[],
nargs="+",
help="""Model mode: [triton_int8kv | ppl_int8kv | ppl_fp16 | triton_flashdecoding
| triton_gqa_attention | triton_gqa_flashdecoding
| triton_w4a16 | triton_w8a16 | triton_w8a8 | lmdeploy_w4a16
| ppl_w4a16 | ppl_w8a8 | ppl_w8a8_mixdown],
triton_flashdecoding mode is for long context, current support llama llama2 qwen;
triton_gqa_attention and triton_gqa_flashdecoding is fast kernel for model which use GQA;
triton_int8kv mode use int8 to store kv cache, can increase token capacity, use triton kernel;
ppl_int8kv mode use int8 to store kv cache, and use ppl fast kernel;
ppl_fp16 mode use ppl fast fp16 decode attention kernel;
triton_int8weight and triton_int4weight and lmdeploy_int4weight or ppl_int4weight mode
use int8 and int4 to store weights;
you need to read source code to make sure the supported detail mode for all models""",
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
)
parser.add_argument("--disable_log_stats", action="store_true", help="disable logging throughput stats.")
parser.add_argument("--log_stats_interval", type=int, default=10, help="log stats interval in second.")
parser.add_argument("--router_token_ratio", type=float, default=0.0, help="token ratio to control router dispatch")
parser.add_argument(
"--router_max_new_token_len", type=int, default=1024, help="the request max new token len for router"
)
parser.add_argument(
"--router_max_wait_tokens",
type=int,
default=10,
help="schedule new requests after every router_max_wait_tokens decode steps.",
)
parser.add_argument("--use_dynamic_prompt_cache", action="store_true", help="use_dynamic_prompt_cache test")
parser.add_argument("--splitfuse_block_size", type=int, default=256, help="splitfuse block size")
parser.add_argument("--splitfuse_mode", action="store_true", help="use splitfuse mode")
parser.add_argument("--beam_mode", action="store_true", help="use beamsearch mode")
parser.add_argument("--diverse_mode", action="store_true", help="diversity generation mode")
parser.add_argument("--token_healing_mode", action="store_true", help="code model infer mode")
parser.add_argument(
"--enable_multimodal", action="store_true", help="Whether or not to allow to load additional multimodal models."
)
parser.add_argument(
"--cache_capacity", type=int, default=200, help="cache server capacity for multimodal resources"
)
parser.add_argument(
"--cache_reserved_ratio", type=float, default=0.5, help="cache server reserved capacity ratio after clear"
)
parser.add_argument(
"--data_type",
type=str,
choices=["fp16", "float16", "bf16", "bfloat16", "fp32", "float32"],
default="float16",
help="the data type of the model weight",
)
parser.add_argument("--return_all_prompt_logprobs", action="store_true", help="return all prompt tokens logprobs")
parser.add_argument(
"--long_truncation_mode",
type=str,
choices=[None, "head", "center"],
default=None,
help="""use to select the handle way when input token len > max_req_input_len.
None : raise Exception
head : remove some head tokens to make input token len <= max_req_input_len
center : remove some tokens in center loc to make input token len <= max_req_input_len""",
)
parser.add_argument("--use_tgi_api", action="store_true", help="use tgi input and ouput format")
parser.add_argument(
"--health_monitor", action="store_true", help="check the health of service and restart when error"
)
parser.add_argument("--metric_gateway", type=str, default=None, help="address for collecting monitoring metrics")
parser.add_argument("--job_name", type=str, default="lightllm", help="job name for monitor")
parser.add_argument("--push_interval", type=int, default=10, help="interval of pushing monitoring metrics")
parser.add_argument(
"--enable_monitor_auth", action="store_true", help="Whether to open authentication for push_gateway"
)
args = parser.parse_args()
global g_generate_func
global g_generate_stream_func
if args.use_tgi_api:
g_generate_func = tgi_generate_impl
g_generate_stream_func = tgi_generate_stream_impl
else:
g_generate_func = lightllm_generate
g_generate_stream_func = lightllm_generate_stream
logger.info(f"use tgi api: {args.use_tgi_api}")
assert args.max_req_input_len < args.max_req_total_len
assert args.max_req_total_len <= args.max_total_token_num
# 这些模式不能同时设置。
assert [args.splitfuse_mode, args.beam_mode, args.diverse_mode, args.token_healing_mode].count(True) <= 1
# 部分模式目前还无法与dynamic_prompt_cache一起跑,to do。
if args.use_dynamic_prompt_cache:
assert args.beam_mode is False
assert args.token_healing_mode is False
# 部分模式还不能支持与高级动态调度算法协同,to do.
if args.beam_mode or args.diverse_mode:
assert args.router_token_ratio == 0.0
if not args.splitfuse_mode:
# 普通模式下
if args.batch_max_tokens is None:
batch_max_tokens = int(1 / 6 * args.max_total_token_num)
batch_max_tokens = max(batch_max_tokens, args.max_req_total_len)
args.batch_max_tokens = batch_max_tokens
else:
assert args.batch_max_tokens >= args.max_req_total_len, "batch_max_tokens must >= max_req_total_len"
else:
# splitfuse 模式下
# assert args.batch_max_tokens is not None, "need to set by yourself"
if args.batch_max_tokens is None:
batch_max_tokens = int(1 / 6 * args.max_total_token_num)
batch_max_tokens = max(batch_max_tokens, args.splitfuse_block_size)
args.batch_max_tokens = batch_max_tokens
logger.info(f"all start args:{args}")
can_use_ports = alloc_can_use_network_port(num=6 + args.tp, used_nccl_port=args.nccl_port)
router_port, detokenization_port, httpserver_port, visual_port, cache_port, metric_port = can_use_ports[0:6]
model_rpc_ports = can_use_ports[6:]
if args.enable_multimodal:
start_submodule_processes(
start_funcs=[
start_cache_manager,
],
start_args=[(cache_port, args)],
)
start_submodule_processes(
start_funcs=[
start_metric_manager,
],
start_args=[(metric_port, args)],
)
global metric_client
metric_client = MetricClient(metric_port)
# help to manage data stored on Ceph
if "s3://" in args.model_dir:
from lightllm.utils.petrel_helper import s3_model_prepare
s3_model_prepare(args.model_dir)
global httpserver_manager
httpserver_manager = HttpServerManager(
args,
router_port=router_port,
cache_port=cache_port,
visual_port=visual_port,
httpserver_port=httpserver_port,
enable_multimodal=args.enable_multimodal,
metric_port=metric_port,
)
start_submodule_processes(
start_funcs=[start_router_process, start_detokenization_process],
start_args=[
(args, router_port, detokenization_port, model_rpc_ports, metric_port),
(args, detokenization_port, httpserver_port),
],
)
if args.enable_multimodal:
start_submodule_processes(
start_funcs=[
start_visual_process,
],
start_args=[
(args, router_port, visual_port, cache_port),
],
)
if "s3://" in args.model_dir:
from lightllm.utils.petrel_helper import s3_model_clear
s3_model_clear(args.model_dir)
if args.health_monitor:
from lightllm.server.health_monitor.manager import start_health_check_process
start_submodule_processes(start_funcs=[start_health_check_process], start_args=[(args,)])
# 共享变量,用于获取router端调度分析得到的机器负载信息
from lightllm.server import TokenLoad
global shared_token_load
shared_token_load = TokenLoad(f"{str(args.nccl_port)}_shared_token_load")
server.install_signal_handlers()
uvicorn.run(
app,
host=args.host,
port=args.port,
log_level="debug",
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
loop="uvloop",
)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn"), # this code will not be ok for settings to fork to subprocess
main()