-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathage_pred_model.py
936 lines (802 loc) · 41.9 KB
/
age_pred_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
#!/usr/bin/python
# python age_pred_model.py [-age] [-sex] [-u] [-d] [-b] [-n] [-tsr] [-iam] [-oam] [-fsm] [-epr] [-pmf] [-i] [-s]
import os
import argparse
import logging
import shutil
import numpy as np
import pandas as pd
from datetime import datetime
from itertools import product
import copy
from imblearn.over_sampling import SMOTENC
from imblearn.under_sampling import RandomUnderSampler
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import KFold, train_test_split
import optuna
from sklearn.decomposition import PCA
from sklearn.linear_model import LassoCV, ElasticNet
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from lightgbm import LGBMRegressor
from xgboost import XGBRegressor
from sklearn.metrics import mean_absolute_error
import pickle
import json
## Argument parser: ===================================================================
parser = argparse.ArgumentParser(description="")
## How to split data into groups:
parser.add_argument("-age", "--age_method", type=int, default=1,
help="The method to define age groups. (0: 'cut_at_40', 1: 'cut_44-45', 2: 'wais_8_seg'; default: 1).")
parser.add_argument("-sex", "--by_gender", type=int, default=1,
help="Whether to separate the data by gender. (0: False, 1: True; default: 1).")
## Balancing data such that all groups have the same number of participants:
parser.add_argument("-u", "--upsample", action="store_true", default=False,
help="Up-sample the data using SMOTENC.")
parser.add_argument("-d", "--downsample", action="store_true", default=False,
help="Down-sample the data without replacement.")
parser.add_argument("-b", "--bootstrap", action="store_true", default=False,
help="Down-sample the data with replacement (i.e., bootstrapping).")
parser.add_argument("-n", "--sample_size", type=int, default=None,
help="The number of participants to up- or down-sample to.")
## Split data into training and testing sets:
parser.add_argument("-tsr", "--testset_ratio", type=float, default=0.3,
help="The ratio of the testing set.")
## Feature selection:
parser.add_argument("-iam", "--include_all_mappings", action="store_true", default=False,
help="Include 'All' domain-approach mappings for feature selection. (default: False).")
parser.add_argument("-oam", "--only_all_mapping", action="store_true", default=False,
help="Include only 'All' domain-approach mappings for feature selection. (default: False).")
parser.add_argument("-fsm", "--feature_selection_model", type=int, default=0,
help="The model to use for feature selection. Options: 0 (LassoCV), 1 (RF), 2 (XGBR).")
parser.add_argument("-epr", "--explained_ratio", type=float, default=0.9,
help="The variance to be explained by the selected features.")
## Model training:
parser.add_argument("-pmf", "--pretrained_model_folder", type=str, default=None,
help="Folder containing the pre-trained model files (.pkl).")
parser.add_argument("-i", "--ignore", type=int, default=0,
help="Ignore the first N iterations (In case you might be interrupted and don't want to start from the beginning)ㄡ")
parser.add_argument("-s", "--seed", type=int, default=None,
help="The value used to initialize all random number generator.")
args = parser.parse_args()
## Classes: ===========================================================================
class Config:
def __init__(self):
self.data_file_path = os.path.join("rawdata", "DATA_ses-01_2024-12-09.csv")
self.inclusion_file_path = os.path.join("rawdata", "InclusionList_ses-01.csv")
# self.syndata_file_path = os.path.join("syndata", "SMOTENC_wais-8_60.csv")
self.age_method = ["cut_at_40", "cut_44-45", "wais_8_seg"][args.age_method]
self.by_gender = [False, True][args.by_gender]
self.testset_ratio = args.testset_ratio
self.feature_selection_model = ["LassoCV", "RF", "XGBR"][args.feature_selection_model]
self.explained_ratio = args.explained_ratio
self.pad_method = ["wais_8_seg", "every_5_yrs"][0]
self.out_folder = os.path.join("outputs", datetime.today().strftime('%Y-%m-%d_%H.%M.%S'))
self.description_outpath = os.path.join(self.out_folder, "description.json")
self.preprocessed_data_outpath = os.path.join(self.out_folder, "preprocessed_data.csv")
self.logging_outpath = os.path.join(self.out_folder, "log.txt")
self.failure_record_outpath = os.path.join(self.out_folder, "failure_record.txt")
self.results_outpath_template = os.path.join(self.out_folder, "results_groupname_oriname.json")
self.model_outpath_template = os.path.join(self.out_folder, "models_groupname_oriname_modeltype.pkl")
class Constants:
def __init__(self):
## The age groups defined by different methods:
self.age_groups = {
"cut_at_40": {
"le-40" : ( 0, 40), # less than or equal to
"ge-41" : (41, np.inf) # greater than or equal to
},
"cut_44-45": {
"le-44" : ( 0, 44),
"ge-45" : (45, np.inf)
},
"wais_8_seg": {
"le-24": ( 0, 24),
"25-29": (25, 29),
"30-34": (30, 34),
"35-44": (35, 44),
"45-54": (45, 54),
"55-64": (55, 64),
# "ge-65": (65, np.inf)
"65-69": (65, 69),
"ge-70": (70, np.inf)
},
"every_5_yrs": {
"le-24": ( 0, 24),
"25-29": (25, 29),
"30-34": (30, 34),
"35-39": (35, 39),
"40-44": (40, 44),
"45-49": (45, 49),
"50-54": (50, 54),
"55-59": (55, 59),
"60-64": (60, 64),
"65-69": (65, 69),
"70-74": (70, 74),
"ge-75": (75, np.inf)
}
}
## The correspondence between domains and approaches:
self.domain_approach_mapping = {
"STRUCTURE": {
"domains": ["STRUCTURE"],
"approaches": ["MRI"]
},
"BEH": {
"domains": ["MOTOR", "MEMORY", "LANGUAGE"],
"approaches": ["BEH"]
},
"FUNCTIONAL": {
"domains": ["MOTOR", "MEMORY", "LANGUAGE"],
"approaches": ["EEG", "MRI"]
}
}
## The names of models to evaluate:
self.model_names = [
"ElasticNet",
"RF", # RandomForestRegressor
"CART", # DecisionTreeRegressor
"LGBM", # lgb.LGBMRegressor
"XGBM" # xgb.XGBRegressor
]
## The number of participants in each balanced group:
self.N_per_group = {
"SMOTENC": 60,
"downsample": 15,
"bootstrap": 15
}
## Functions: =========================================================================
def load_and_merge_datasets(data_file_path, inclusion_file_path):
'''
Read the data and inclusion table, and merge them.
'''
## Load the main dataset:
DF = pd.read_csv(data_file_path)
logging.info("Successfully loaded the main dataset.")
## Load the file marking whether a data has been collected from individual participants:
inclusion_df = pd.read_csv(inclusion_file_path)
logging.info("Successfully loaded the inclusion table.")
## Only include participants with MRI data:
inclusion_df = inclusion_df.query("MRI == 1")
## Ensure consistent ID column names:
if "BASIC_INFO_ID" in DF.columns:
DF = DF.rename(columns={"BASIC_INFO_ID": "ID"})
## Merge the two dataframes to apply inclusion criteria:
DF = pd.merge(DF, inclusion_df[["ID"]], on="ID", how='inner')
## Transform column data type:
DF["BASIC_INFO_SEX"] = DF["BASIC_INFO_SEX"].astype('int')
DF["BASIC_INFO_AGE"] = DF["BASIC_INFO_AGE"].astype('int')
return DF
def make_balanced_dataset(DF, balancing_method, age_bin_dict, N_per_group, seed):
'''
Make balanced datasets using specified balancing methods, including:
OverSampling using 'SMOTENC' (Synthetic Minority Oversampling Technique)
- see: https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTENC.html#imblearn.over_sampling.SMOTENC.fit_resample
UnderSampling using 'RandomUnderSampler' with (bootstrap) or without replacement (downsample)
- see: https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html#imblearn.under_sampling.RandomUnderSampler
'''
## Assign "AGE-GROUP_SEX" labels:
DF["AGE-GROUP"] = pd.cut(
x=DF["BASIC_INFO_AGE"],
bins=[ 0 ] + [ x for _, x in list(age_bin_dict.values()) ],
labels=list(age_bin_dict.keys())
)
DF["SEX"] = DF["BASIC_INFO_SEX"].map({1: "M", 2: "F"})
DF["AGE-GROUP_SEX"] = DF.loc[:, ["AGE-GROUP", "SEX"]].agg("_".join, axis=1)
## Drop redundant columns:
DF.drop(columns=["ID", "AGE-GROUP", "SEX"], inplace=True)
## Drop and "BASIC_INFO_" columns except "BASIC_INFO_AGE":
DF.drop(columns=[ col for col in DF.columns if (( col.startswith("BASIC_") ) and ( col not in ["BASIC_INFO_AGE", "BASIC_INFO_SEX"] ))], inplace=True)
## Fill missing values:
target_col = "AGE-GROUP_SEX"
target_classes = list(DF[target_col].unique())
DF_imputed_list = []
# N_per_group = 0 if N_per_group is None else N_per_group
for t in target_classes:
sub_DF = DF[DF[target_col] == t]
sub_X = sub_DF.drop(columns=[target_col])
imputer = SimpleImputer(strategy="median")
sub_DF_imputed = pd.DataFrame(imputer.fit_transform(sub_X), columns=sub_X.columns)
sub_DF_imputed[target_col] = sub_DF[target_col].reset_index(drop=True)
DF_imputed_list.append(sub_DF_imputed)
# if (balancing_method == "SMOTENC") and (len(sub_DF_imputed) > N_per_group):
# N_per_group = len(sub_DF_imputed)
# elif (balancing_method == "downsample" | balancing_method == "bootstrap") and (len(sub_DF_imputed) < N_per_group):
# N_per_group = len(sub_DF_imputed)
DF_imputed = pd.concat(DF_imputed_list)
DF_imputed.reset_index(drop=True, inplace=True)
## Make balanced datasets:
if balancing_method == "SMOTENC":
sampler = SMOTENC(
categorical_features=["BASIC_INFO_AGE", "BASIC_INFO_SEX"],
sampling_strategy={ t: N_per_group for t in target_classes },
random_state=seed
)
elif balancing_method == "downsample":
sampler = RandomUnderSampler(
sampling_strategy={ t: N_per_group for t in target_classes },
random_state=seed,
replacement=False
)
elif balancing_method == "bootstrap":
sampler = RandomUnderSampler(
sampling_strategy={ t: N_per_group for t in target_classes },
random_state=seed,
replacement=True
)
X_resampled, y_resampled = sampler.fit_resample(
X=DF_imputed.drop(columns=[target_col]),
y=DF_imputed[target_col]
)
## Merge back with target variable and create ID column:
DF_balanced = pd.merge(
pd.DataFrame({target_col: y_resampled}), X_resampled,
left_index=True, right_index=True
)
DF_balanced.insert(0, "ID", [ f"sub-{x:04d}" for x in DF_balanced.index ])
return target_col, DF_balanced
def mark_synthetic_data(DF, DF_upsampled):
'''
Add a new column to mark whether the data is real or synthetic.
'''
## Find the common NA-free columns between the two dataframes:
DF_nona = DF.dropna(axis=1)
nona_cols = list(DF_nona.columns)
common_nona_cols = [ x for x in nona_cols if x in DF_upsampled.columns ]
common_nona_cols.remove("ID")
## Add a new column to mark whether the data is real or synthetic:
DF_upsampled.insert(1, "R_S", "Synthetic")
DF_real = (
DF_upsampled
.loc[:, common_nona_cols]
.reset_index()
.merge(DF.loc[:, common_nona_cols], how='inner', on=common_nona_cols)
.set_index('index')
)
DF_upsampled.loc[DF_real.index, "R_S"] = "Real"
return DF_upsampled
def preprocess_grouped_dataset(X, y, ids, testset_ratio, seed):
'''
Fill missing values, split into training and testing sets, and feature scale the grouped dataset.
Inputs:
- X (pd.DataFrame): Feature matrix
- y (pd.Series): Target variable
- ids (pd.Series): IDs of participants
- testset_ratio (float): The ratio of testing set to the whole dataset
- seed (int): Random seed
Return:
- (dict): A dictionary of train-test splited data, storing
the standardized feature values, age, and ID numbers of participants.
'''
## Fill missing values:
imputer = SimpleImputer(strategy="median")
X_imputed = pd.DataFrame(imputer.fit_transform(X), columns=X.columns)
## Split into training and testing sets, and then apply feature scaling:
scaler = MinMaxScaler()
if testset_ratio != 0:
X_train, X_test, y_train, y_test, id_train, id_test = train_test_split(
X_imputed, y, ids, test_size=testset_ratio, random_state=seed)
X_train_scaled = pd.DataFrame(scaler.fit_transform(X_train), columns=X_train.columns)
X_test_scaled = pd.DataFrame(scaler.transform(X_test), columns=X_test.columns)
else:
X_train, y_train, id_train = X_imputed, y, ids
X_train_scaled = pd.DataFrame(scaler.fit_transform(X_train), columns=X_train.columns)
X_test_scaled, y_test, id_test = pd.DataFrame(), pd.Series(), pd.Series()
return {
"X_train": X_train_scaled,
"X_test": X_test_scaled,
"y_train": y_train,
"y_test": y_test,
"id_train": id_train.reset_index(drop=True),
"id_test": id_test.reset_index(drop=True)
}
def feature_selection(X, y, model_name, explained_ratio, seed, nfold=5):
'''
Inputs:
- X (pd.DataFrame): Feature matrix.
- y (pd.Series) : Target variable (i.e., age).
- model_name (str): A key that specify the model to use for feature selection.
- explained_ratio (float): The desired variance to be explained by the selected features.
Return:
- (list): Names of selected features.
'''
logging.info(f"Selecting data features using {model_name} (explained_ratio={explained_ratio}) ...")
# Estimate model coefficients with cross-validation:
if model_name == "LassoCV":
model = LassoCV(cv=nfold, random_state=seed)
model.fit(X, y)
sort_by = np.abs(model.coef_) # absolute value of the coefficients
elif model_name == "RF":
model = RandomForestRegressor(n_estimators=100, random_state=seed)
model.fit(X, y)
sort_by = model.feature_importances_
elif model_name == "XGBR":
model = XGBRegressor(n_estimators=100, random_state=seed)
model.fit(X, y)
sort_by = model.feature_importances_
## Rank the features based on the coefficients:
ranked_features = [
f[0] for f in sorted(
zip(X.columns, sort_by), key=lambda x: x[1], reverse=True
)
]
# Apply PCA to determine the number of features that explain the desired variance
pca = PCA()
pca.fit(X[ranked_features], y)
cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
# Find the number of components that explain the desired variance
num_components = np.argmax(cumulative_variance >= explained_ratio) + 1
# Select the top features based on the number of components
ranked_selected_features = ranked_features[:num_components]
return list(ranked_selected_features)
def optimize_hyperparameters(trial, X, y, model_name, seed):
'''
Inputs:
- trial (optuna.trial.Trial)
- X (pd.DataFrame): Feature matrix.
- y (pd.Series) : Target variable (i.e., age).
- model_name (str): A key that specify the models to evaluate.
Return:
- (float): Average mean absolute error (MAE) score across cross validation.
'''
if model_name == "ElasticNet":
model = ElasticNet(
alpha=trial.suggest_float('alpha', 1e-5, 1, log=True),
l1_ratio=trial.suggest_float('l1_ratio', 0, 1),
random_state=seed
)
elif model_name == "RF":
model = RandomForestRegressor(
n_estimators=trial.suggest_int('n_estimators', 10, 200),
max_depth=trial.suggest_int('max_depth', 2, 32),
random_state=seed
)
elif model_name == "CART":
model = DecisionTreeRegressor(
max_depth=trial.suggest_int('max_depth', 2, 32),
min_samples_split=trial.suggest_int('min_samples_split', 2, 20),
random_state=seed
)
elif model_name == "LGBM":
model = LGBMRegressor(
objective='regression',
metric='mae',
num_leaves=trial.suggest_int('num_leaves', 2, 256),
learning_rate=trial.suggest_float('learning_rate', 1e-4, 1.0, log=True),
feature_fraction=trial.suggest_float('feature_fraction', 0.1, 1.0),
bagging_fraction=trial.suggest_float('bagging_fraction', 0.1, 1.0),
bagging_freq=trial.suggest_int('bagging_freq', 1, 7),
min_child_samples=trial.suggest_int('min_child_samples', 5, 100),
# device='cpu', # If GPU is not available
random_state=seed
)
elif model_name == "XGBM":
model = XGBRegressor(
max_depth=trial.suggest_int('max_depth', 1, 9),
learning_rate=trial.suggest_float('learning_rate', 1e-4, 1.0, log=True),
n_estimators=trial.suggest_int('n_estimators', 100, 1000),
min_child_weight=trial.suggest_int('min_child_weight', 1, 10),
subsample=trial.suggest_float('subsample', 0.1, 1.0),
colsample_bytree=trial.suggest_float('colsample_bytree', 0.1, 1.0),
# tree_method='hist', # If GPU is not available
random_state=seed
)
## Evaluate the model using cross validation:
kf = KFold(n_splits=5, shuffle=True, random_state=seed)
mae_scores = []
for n_fold, (train_index, val_index) in enumerate(kf.split(X)):
logging.info(f"Parameter optimization for {model_name}, trial {trial.number}, fold {n_fold+1} ...")
if X.iloc[train_index].empty:
return np.inf # If the training data is empty, return an error value
else:
model.fit(X.iloc[train_index], y.iloc[train_index])
y_pred = model.predict(X.iloc[val_index])
mae_scores.append(mean_absolute_error(y.iloc[val_index], y_pred))
return np.mean(mae_scores)
def train_and_evaluate(X, y, model_names, seed, optimize_trials=50):
'''
Inputs:
- X (pd.DataFrame) : Feature matrix.
- y (pd.Series) : Target variable (i.e., age).
- model_names (list): List of keys that specify the models to evaluate.
Return:
- (dict): The evaluation results for each model, including:
the mean and standard deviation of MAE scores,
the best model, and the best hyperparameters.
'''
results = {}
for model_name in model_names:
## Initialize the model with the best hyperparameters:
study = optuna.create_study(
direction='minimize',
sampler=optuna.samplers.RandomSampler(seed=seed)
)
study.optimize(
lambda trial: optimize_hyperparameters(trial, X, y, model_name, seed),
n_trials=optimize_trials,
show_progress_bar=True
)
logging.info(f"Parameter optimization for {model_name} is completed.")
if model_name == "ElasticNet":
best_model = ElasticNet(**study.best_params, random_state=seed)
elif model_name == "RF":
best_model = RandomForestRegressor(**study.best_params, random_state=seed)
elif model_name == "CART":
best_model = DecisionTreeRegressor(**study.best_params, random_state=seed)
elif model_name == "LGBM":
best_model = LGBMRegressor(**study.best_params, random_state=seed)
elif model_name == "XGBM":
best_model = XGBRegressor(**study.best_params, random_state=seed)
## Calculate the mean and standard deviation of mean absolute error:
kf = KFold(n_splits=5, shuffle=True, random_state=seed)
mae_scores = []
for n_fold, (train_index, val_index) in enumerate(kf.split(X)):
logging.info(f"Evaluating {model_name}, fold {n_fold+1} ...")
best_model.fit(X.iloc[train_index], y.iloc[train_index])
y_pred = best_model.predict(X.iloc[val_index])
mae_scores.append(mean_absolute_error(y.iloc[val_index], y_pred))
## Storing results:
results[model_name] = {
"mae_mean" : np.mean(mae_scores),
"mae_std" : np.std(mae_scores),
"best_model" : best_model,
"best_params": study.best_params
}
return results
def generate_correction_ref(age, pad, age_groups, age_breaks):
'''
Inputs:
- age (pd.Series): The actual age of the participants.
- pad (np.Array): Predicted age difference.
- age_groups (list): The labels of age groups.
- age_breaks (sequence of scalars): The bin edges of age groups.
Return:
- (pd.DataFrame): A reference table for age correction, including
the mean and standard deviation of PAD for each age group.
'''
## Create a DataFrame containing the actual age and PAD values:
DF = pd.DataFrame({"Age": age, "PAD": pad})
## Assign age labels based on the given age bin edges:
DF["Group"] = pd.cut(DF["Age"], bins=age_breaks, labels=age_groups)
## Calculate the mean and standard deviation of PAD for each age group:
correction_ref = DF.groupby("Group", observed=True)["PAD"].agg(['mean', 'std']).reset_index()
return correction_ref.rename(columns={"mean": "PAD_mean", "std": "PAD_std"})
def apply_age_correction(predictions, true_ages, correction_ref, age_groups, age_breaks):
'''
Inputs:
- predictions (pd.Series): Predicted age.
- true_ages (pd.Series): Actual age.
- correction_ref (pd.DataFrame): Reference table for age correction.
Return:
- (np.Array): Corrected age predictions.
'''
corrected_predictions = []
for pred, true_age in zip(predictions, true_ages):
## Calculate the predicted age difference (PAD) for the current sample:
pad = pred - true_age
## Determine the age group of the current sample:
age_label = pd.cut([true_age], bins=age_breaks, labels=age_groups)[0]
## Get the mean and standard deviation of PAD for the age group:
if age_label in list(correction_ref["Group"]):
pad_mean = correction_ref.query("Group == @age_label")["PAD_mean"].values[0]
pad_std = correction_ref.query("Group == @age_label")["PAD_std"].values[0]
else:
## If the age group is not in the reference table, use the mean and standard deviation of all samples:
pad_mean = correction_ref["PAD_mean"].mean()
pad_std = correction_ref["PAD_std"].mean()
if pad_std == 0: # Handle the case where the std of the PAD is zero
padac = pad - pad_mean
else:
padac = (pad - pad_mean) / pad_std # The age-corrected PAD
## Store the corrected age prediction into list:
corrected_predictions.append(pred - padac)
return np.array(corrected_predictions)
def convert_np_types(obj):
if isinstance(obj, np.ndarray):
return obj.tolist() # Convert np.ndarray to list
elif isinstance(obj, np.generic):
return obj.item() # Convert np.generic to scalar
elif isinstance(obj, list):
return [ convert_np_types(i) for i in obj ]
elif isinstance(obj, dict):
return { k: convert_np_types(v) for k, v in obj.items() }
else:
return obj
## Main: ==============================================================================
def main():
## Setup config and constant objects:
config = Config()
constant = Constants()
## Create output folder if it doesn't exist:
if not os.path.exists(config.out_folder):
os.makedirs(config.out_folder)
## Setup logging file:
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
filename=config.logging_outpath
) # https://zx7978123.medium.com/python-logging-%E6%97%A5%E8%AA%8C%E7%AE%A1%E7%90%86%E6%95%99%E5%AD%B8-60be0a1a6005
## Define the random seed:
if args.seed is None:
seed = np.random.randint(0, 10000)
else:
seed = args.seed
## Define the sampling method and number of participants per balanced group:
if args.upsample:
balancing_method = "SMOTENC"
elif args.downsample:
balancing_method = "downsample"
elif args.bootstrap:
balancing_method = "bootstrap"
else:
balancing_method = None
N_per_group = None
if balancing_method is not None:
if args.sample_size is None:
N_per_group = constant.N_per_group[balancing_method]
else:
N_per_group = args.sample_size
## Define the labels and boundaries of age groups:
age_bin_labels = list(constant.age_groups[config.age_method].keys())
age_boundaries = list(constant.age_groups[config.age_method].values())
## Define the labels and boundaries for age correction:
pad_age_groups = list(constant.age_groups[config.pad_method].keys())
pad_age_breaks = [ 0 ] + [ x for _, x in list(constant.age_groups[config.pad_method].values()) ]
## Include (or only include) the 'ALL' domain-approach mapping, if specified:
if args.include_all_mappings:
logging.info("Include the 'ALL' domain-approach mapping.")
constant.domain_approach_mapping["ALL"] = {
"domains": ["STRUCTURE", "MOTOR", "MEMORY", "LANGUAGE"],
"approaches": ["MRI", "BEH", "EEG"]
}
elif args.only_all_mapping:
logging.info("Only include the 'ALL' domain-approach mapping.")
constant.domain_approach_mapping = {
"ALL": {
"domains": ["STRUCTURE", "MOTOR", "MEMORY", "LANGUAGE"],
"approaches": ["MRI", "BEH", "EEG"]
}
}
## Save the description of the current execution as a JSON file:
desc = {
"DataVersion": config.data_file_path,
"InclusionVersion": config.inclusion_file_path,
"DataBalancingMethod": balancing_method,
"NumPerBalancedGroup": N_per_group,
"Seed": seed,
"SexSeparated": config.by_gender,
"AgeGroups": age_bin_labels,
"IgnoreFirstGroups": args.ignore,
"CorrectionAgeGroups": pad_age_groups,
"TestsetRatio": config.testset_ratio,
"FeatureOrientations": list(constant.domain_approach_mapping.keys()),
"FeatureSelectionModel": config.feature_selection_model,
"FeatureExplainedRatio": config.explained_ratio,
"OptimizedModels": constant.model_names,
"UsePretrainedModels": args.pretrained_model_folder
}
desc = convert_np_types(desc)
with open(config.description_outpath, 'w', encoding='utf-8') as f:
json.dump(desc, f, ensure_ascii=False)
logging.info("The description of the current execution has been saved as a JSON file.")
## Copy the current Python script to the output folder:
shutil.copyfile(
src=os.path.abspath(__file__),
dst=os.path.join(config.out_folder, os.path.basename(__file__))
)
logging.info("The current Python script has been copied to the output folder.")
## Record the failed processing to a text file:
record_if_failed = []
## STEP-1. Load data, split into groups, and preprocess -------------------------------------------------------
## Load the raw dataset:
DF = load_and_merge_datasets(
data_file_path=config.data_file_path,
inclusion_file_path=config.inclusion_file_path
)
## Make balanced datasets if specified:
if balancing_method is not None:
target_col, DF_balanced = make_balanced_dataset(
DF=copy.deepcopy(DF),
balancing_method=balancing_method,
age_bin_dict=constant.age_groups["wais_8_seg"],
N_per_group=N_per_group,
seed=seed
)
DF_balanced.drop(columns=[target_col], inplace=True)
else:
DF_balanced = DF
## Divide the dataset into groups and define their labels:
if args.by_gender:
logging.info("Separating data according to participants' age ranges and genders.")
sub_DF_list = [
DF_balanced[(DF_balanced["BASIC_INFO_AGE"].between(lb, ub)) & (DF_balanced["BASIC_INFO_SEX"] == sex)]
for (lb, ub), sex in list(product(age_boundaries, [1, 2]))
]
sub_DF_labels = [ f"{age_group}_{sex}" for age_group, sex in list(product(age_bin_labels, ["M", "F"])) ]
else:
logging.info("Separating data according to participants' age ranges.")
sub_DF_list = [
DF_balanced[DF_balanced["BASIC_INFO_AGE"].between(lb, ub)]
for lb, ub in age_boundaries
]
sub_DF_labels = age_bin_labels
## Save the preprocessed dataset:
pd.concat(sub_DF_list).to_csv(config.preprocessed_data_outpath, index=False)
if balancing_method == "SMOTENC":
fn = config.preprocessed_data_outpath.replace(".csv", " (marked).csv")
DF_marked = mark_synthetic_data(DF, DF_balanced)
DF_marked.to_csv(fn, index=False)
## Separately preprocess different data subsets:
preprocessed_data_dicts = {}
for group_name, sub_DF in zip(sub_DF_labels, sub_DF_list):
if sub_DF.empty:
preprocessed_data_dicts[group_name] = None
else:
sub_DF = sub_DF.reset_index(drop=True)
preprocessed_data_dicts[group_name] = preprocess_grouped_dataset(
X=sub_DF.drop(columns=["ID", "BASIC_INFO_AGE"]),
y=sub_DF["BASIC_INFO_AGE"],
ids=sub_DF["ID"],
testset_ratio=config.testset_ratio,
seed=seed
) # a dictionary of train-test splited data, storing
# the standardized feature values, age, and ID numbers of participants.
## STEP-2. Feature selection -----------------------------------------------------------------------------------
iter = 0 # iteration counter for skipping
for group_name, data_dict in preprocessed_data_dicts.items():
if data_dict is None:
logging.warning(f"Unable to process data for group '{group_name}'.")
record_if_failed.append(f"Entire {group_name}.")
continue
else:
for ori_name, ori_content in constant.domain_approach_mapping.items():
### Skip the current iteration
if iter < args.ignore:
logging.info(f"Skipping iteration: group='{group_name}', type='{ori_name}'")
iter += 1
### Continue the current iteration
else:
#### Train models from scratch:
if args.pretrained_model_folder is None:
logging.info(f"Processing group: {group_name}, type: {ori_name}")
iter += 1
included_features = [ # filter the features based on the domain and approach
col for col in data_dict["X_train"].columns
if any( domain in col for domain in ori_content["domains"] )
and any( app in col for app in ori_content["approaches"] )
and "RESTING" not in col
]
if ori_name == "FUNCTIONAL": # exclude "STRUCTURE" features
included_features = [ col for col in included_features if "STRUCTURE" not in col ]
if len(included_features) == 0:
logging.warning(f"There are no available features for orientation '{ori_name}' in group '{group_name}'.")
record_if_failed.append(f"{ori_name} of {group_name}.")
continue
else:
selected_features = feature_selection(
X=data_dict["X_train"].loc[:, included_features],
y=data_dict["y_train"],
model_name=config.feature_selection_model,
explained_ratio=config.explained_ratio,
seed=seed
)
## STEP-3. Find the best model and save its parameters -------------------------------------------------------
X_train_selected = data_dict["X_train"].loc[:, selected_features]
if X_train_selected.empty:
logging.warning(f"After feature selection, there are no available features for orientation '{ori_name}' in group '{group_name}'.")
record_if_failed.append(f"{ori_name} of {group_name} after feature selection.")
continue
else:
results = train_and_evaluate(
X=X_train_selected,
y=data_dict["y_train"],
model_names=constant.model_names,
seed=seed
) # Including ...
# the mean and standard deviation of MAE scores, ...
# the best model, and the best hyperparameters.
best_model_name = min(results, key=lambda x: results[x]["mae_mean"])
best_model = results[best_model_name]["best_model"]
mean_train_mae = results[best_model_name]["mae_mean"]
model_outpath = (
config.model_outpath_template
.replace("groupname", group_name)
.replace("oriname", ori_name)
.replace("modeltype", best_model_name)
)
with open(model_outpath, 'wb') as f:
pickle.dump(best_model, f)
logging.info(f"The trained model have been saved for group '{group_name}' and orientation '{ori_name}'.")
#### Use the pre-trained model:
else:
logging.info(f"Using pre-trained models for group '{group_name}' and orientation '{ori_name}'.")
previous_path = os.path.join("outputs", args.pretrained_model_folder)
saved_json = f"results_{group_name}_{ori_name}.json"
with open(os.path.join(previous_path, saved_json), 'r', encoding='utf-8') as f:
saved_results = json.load(f)
best_model_name = saved_results["Model"]
selected_features = saved_results["FeatureNames"]
mean_train_mae = saved_results["MeanTrainMAE"]
saved_model = f"models_{group_name}_{ori_name}_{best_model_name}.pkl"
with open(os.path.join(previous_path, saved_model), 'rb') as f:
best_model = pickle.load(f)
X_train_selected = data_dict["X_train"].loc[:, selected_features]
## STEP-4. Generate age-correction reference table -----------------------------------------------------------
y_pred_train = best_model.predict(X_train_selected)
pad_train = y_pred_train - data_dict["y_train"]
correction_ref = generate_correction_ref(
age=data_dict["y_train"],
pad=pad_train,
age_groups=pad_age_groups,
age_breaks=pad_age_breaks
)
## STEP-5. Apply the model, apply age-correction, and save the results ----------------------------------------
if data_dict["X_test"].empty: # apply the model to the training set
corrected_y_pred_train = apply_age_correction(
predictions=y_pred_train,
true_ages=data_dict["y_train"],
correction_ref=correction_ref,
age_groups=pad_age_groups,
age_breaks=pad_age_breaks
)
corrected_y_pred_train = pd.Series(corrected_y_pred_train, index=data_dict["y_train"].index)
padac_train = corrected_y_pred_train - data_dict["y_train"]
save_results = {
"Model": best_model_name,
"MeanTrainMAE": mean_train_mae,
"NumberOfSubjs": len(data_dict["id_train"]),
"SubjID": list(data_dict["id_train"]),
"Note": "Train and test sets are the same.",
"Age": list(data_dict["y_train"]),
"PredictedAge": list(y_pred_train),
"PredictedAgeDifference": list(pad_train),
"CorrectedPAD": list(padac_train),
"CorrectedPredictedAge": list(corrected_y_pred_train),
"AgeCorrectionTable": correction_ref.to_dict(orient='records'),
"NumberOfFeatures": len(selected_features),
"FeatureNames": selected_features,
}
else:
X_test_selected = data_dict["X_test"].loc[:, selected_features]
y_pred_test = best_model.predict(X_test_selected)
y_pred_test = pd.Series(y_pred_test, index=data_dict["y_test"].index)
pad = y_pred_test - data_dict["y_test"]
corrected_y_pred_test = apply_age_correction(
predictions=y_pred_test,
true_ages=data_dict["y_test"],
correction_ref=correction_ref,
age_groups=pad_age_groups,
age_breaks=pad_age_breaks
)
corrected_y_pred_test = pd.Series(corrected_y_pred_test, index=data_dict["y_test"].index)
padac = corrected_y_pred_test - data_dict["y_test"]
save_results = {
"Model": best_model_name,
"MeanTrainMAE": mean_train_mae,
"NumberOfTraining": len(data_dict["id_train"]),
"TrainingSubjID": list(data_dict["id_train"]),
"NumberOfTesting": len(data_dict["id_test"]),
"TestingSubjID": list(data_dict["id_test"]),
"Age": list(data_dict["y_test"]),
"PredictedAge": list(y_pred_test),
"PredictedAgeDifference": list(pad),
"CorrectedPAD": list(padac),
"CorrectedPredictedAge": list(corrected_y_pred_test),
"AgeCorrectionTable": correction_ref.to_dict(orient='records'),
"NumberOfFeatures": len(selected_features),
"FeatureNames": selected_features,
}
save_results = convert_np_types(save_results)
fp1 = (config.results_outpath_template
.replace("groupname", group_name)
.replace("oriname", ori_name))
with open(fp1, 'w', encoding='utf-8') as f:
json.dump(save_results, f, ensure_ascii=False)
logging.info(f"Model prediction have been saved as JSON files for group '{group_name}' and orientation '{ori_name}'.")
### Next iteration
with open(config.failure_record_outpath, 'w') as f:
f.write("\n".join(record_if_failed))
logging.info("The record of failed processing have been saved.")
if __name__ == "__main__":
main()