-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfilled.py
46 lines (40 loc) · 1.99 KB
/
filled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import h5py
import os
import math
#matplotlib inline
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import pandas as pd
import seaborn as sea
import scipy.signal
import read_data as rd
import organize_data as od
from scipy import signal
import fill_nans as fill
def filled(raw_positions):
filled_tx = fill.fill_nans(raw_positions[0])
filled_ty = fill.fill_nans(raw_positions[1])
filled_hx = fill.fill_nans(raw_positions[2])
filled_hy = fill.fill_nans(raw_positions[3])
filled_ax = fill.fill_nans(raw_positions[4])
filled_ay = fill.fill_nans(raw_positions[5])
filled_r1_x = fill.fill_nans(raw_positions[6])
filled_r1_y = fill.fill_nans(raw_positions[7])
filled_r2_x = fill.fill_nans(raw_positions[8])
filled_r2_y = fill.fill_nans(raw_positions[9])
filled_r3_x = fill.fill_nans(raw_positions[10])
filled_r3_y = fill.fill_nans(raw_positions[11])
filled_l1_x = fill.fill_nans(raw_positions[12])
filled_l1_y = fill.fill_nans(raw_positions[13])
filled_l2_x = fill.fill_nans(raw_positions[14])
filled_l2_y = fill.fill_nans(raw_positions[15])
filled_l3_x = fill.fill_nans(raw_positions[16])
filled_l3_y = fill.fill_nans(raw_positions[17])
x_pos=[filled_r1_x, filled_r2_x, filled_r3_x, filled_l1_x, filled_l2_x, filled_l3_x]
y_pos=[filled_r1_y, filled_r2_y, filled_r3_y, filled_l1_y, filled_l2_y, filled_l3_y]
body_pos = [filled_hx, filled_hy, filled_tx, filled_ty, filled_ax, filled_ay]
x_pos_ego =[filled_r1_x-filled_tx, filled_r2_x-filled_tx, filled_r3_x-filled_tx, filled_l1_x-filled_tx, filled_l2_x-filled_tx, filled_l3_x-filled_tx]
y_pos_ego =[filled_r1_y-filled_ty, filled_r2_y-filled_ty, filled_r3_y-filled_ty, filled_l1_y-filled_ty, filled_l2_y-filled_ty, filled_l3_y-filled_ty]
body_pos_ego = [filled_hx-filled_tx, filled_hy-filled_ty, filled_tx-filled_tx, filled_ty-filled_ty, filled_ax-filled_tx, filled_ay-filled_ty]
return x_pos, y_pos, body_pos, x_pos_ego, y_pos_ego, body_pos_ego