You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Describe the bug
My dataset returns a tensor and a number representing the class. PyTorch Dataloader works with that, but monai.data.Dataloader says the error:
collate/stack a list of tensors
> E: expected Tensor as element 1 in argument 0, but got int, type ['MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int'] in collate([metatensor([[[[-0.5960, -0.5960, -0.5960, ..., -0.5960, -0.5960, -0.5960],
And I also tried one-hot encoding labels, that again works with pytorch DataLoader then it says something like tensor sizes don't match (obviously they dont, first tensor is a 3d image and second is 1d one-hot vector).
To Reproduce
dataset that returns a (tensor, int)
Expected behavior
works like pytorch dataloader
Screenshots
If applicable, add screenshots to help explain your problem.
Environment
Ensuring you use the relevant python executable, please paste the output of:
python -c "import monai; monai.config.print_debug_info()"
================================
Printing MONAI config...
================================
MONAI version: 1.3.0
Numpy version: 1.26.0
Pytorch version: 2.1.1
MONAI flags: HAS_EXT = False, USE_COMPILED = False, USE_META_DICT = False
MONAI rev id: 865972f7a791bf7b42efbcd87c8402bd865b329e
MONAI __file__: D:\miniconda3\envs\pytorch311\Lib\site-packages\monai\__init__.py
Optional dependencies:
Pytorch Ignite version: NOT INSTALLED or UNKNOWN VERSION.
ITK version: NOT INSTALLED or UNKNOWN VERSION.
Nibabel version: 5.2.0
scikit-image version: 0.20.0
scipy version: 1.11.3
Pillow version: 10.0.1
Tensorboard version: NOT INSTALLED or UNKNOWN VERSION.
gdown version: NOT INSTALLED or UNKNOWN VERSION.
TorchVision version: 0.16.1
tqdm version: 4.66.1
lmdb version: NOT INSTALLED or UNKNOWN VERSION.
psutil version: 5.9.4
pandas version: 2.1.1
einops version: NOT INSTALLED or UNKNOWN VERSION.
transformers version: NOT INSTALLED or UNKNOWN VERSION.
mlflow version: NOT INSTALLED or UNKNOWN VERSION.
pynrrd version: NOT INSTALLED or UNKNOWN VERSION.
clearml version: NOT INSTALLED or UNKNOWN VERSION.
For details about installing the optional dependencies, please visit:
https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies
================================
Printing system config...
================================
System: Windows
Win32 version: ('10', '10.0.22631', 'SP0', 'Multiprocessor Free')
Win32 edition: CoreSingleLanguage
Platform: Windows-10-10.0.22631-SP0
Processor: Intel64 Family 6 Model 165 Stepping 2, GenuineIntel
Machine: AMD64
Python version: 3.11.5
Process name: python.exe
Command: ['python', '-c', 'import monai; monai.config.print_debug_info()']
Open files: [popenfile(path='C:\\Program Files\\WindowsApps\\Microsoft.LanguageExperiencePackru-RU_22621.47.187.0_neutral__8wekyb3d8bbwe\\windows\\System32\\ru-RU\\d085649eb0e86d25984170bc5853bb6f\\KernelBase.dll.mui', fd=-1), popenfile(path='C:\\Program Files\\WindowsApps\\Microsoft.LanguageExperiencePackru-RU_22621.47.187.0_neutral__8wekyb3d8bbwe\\windows\\System32\\ru-RU\\ba801c41aa4aa1ad2184fabd9e61fcb4\\msvfw32.dll.mui', fd=-1), popenfile(path='C:\\Program Files\\WindowsApps\\Microsoft.LanguageExperiencePackru-RU_22621.47.187.0_neutral__8wekyb3d8bbwe\\windows\\System32\\ru-RU\\2cbeec04ec887bf07719b55cd4a612fe\\avicap32.dll.mui', fd=-1), popenfile(path='C:\\Windows\\System32\\ru-RU\\tzres.dll.mui', fd=-1), popenfile(path='C:\\Program Files\\WindowsApps\\Microsoft.LanguageExperiencePackru-RU_22621.47.187.0_neutral__8wekyb3d8bbwe\\windows\\System32\\ru-RU\\95e569d0b454ef648523801596491dac\\kernel32.dll.mui', fd=-1)]
Num physical CPUs: 4
Num logical CPUs: 8
Num usable CPUs: 8
CPU usage (%): [7.7, 6.0, 6.4, 5.5, 6.7, 4.6, 3.3, 16.2]
CPU freq. (MHz): 2496
Load avg. in last 1, 5, 15 mins (%): [0.0, 0.0, 0.0]
Disk usage (%): 39.1
Avg. sensor temp. (Celsius): UNKNOWN for given OS
Total physical memory (GB): 39.8
Available memory (GB): 23.9
Used memory (GB): 15.9
================================
Printing GPU config...
================================
Num GPUs: 1
Has CUDA: True
CUDA version: 11.8
cuDNN enabled: True
NVIDIA_TF32_OVERRIDE: None
TORCH_ALLOW_TF32_CUBLAS_OVERRIDE: None
cuDNN version: 8700
Current device: 0
Library compiled for CUDA architectures: ['sm_50', 'sm_60', 'sm_61', 'sm_70', 'sm_75', 'sm_80', 'sm_86', 'sm_37', 'sm_90', 'compute_37']
GPU 0 Name: NVIDIA GeForce GTX 1650
GPU 0 Is integrated: False
GPU 0 Is multi GPU board: False
GPU 0 Multi processor count: 14
GPU 0 Total memory (GB): 4.0
GPU 0 CUDA capability (maj.min): 7.5
The text was updated successfully, but these errors were encountered:
inikishev
changed the title
collate/stack a list of tensors > E: expected Tensor as element 1 in argument 0, but got int, type ['MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int', 'MetaTensor', 'int'] in collate([metatensor([[[[-0.5960, -0.5960, -0.5960, ..., -0.5960, -0.5960, -0.5960],
collate/stack a list of tensors > E: expected Tensor as element 1 in argument 0, but got int
Jun 6, 2024
Describe the bug
My dataset returns a tensor and a number representing the class. PyTorch Dataloader works with that, but monai.data.Dataloader says the error:
And I also tried one-hot encoding labels, that again works with pytorch DataLoader then it says something like tensor sizes don't match (obviously they dont, first tensor is a 3d image and second is 1d one-hot vector).
To Reproduce
dataset that returns a (tensor, int)
Expected behavior
works like pytorch dataloader
Screenshots

If applicable, add screenshots to help explain your problem.
Environment
Ensuring you use the relevant python executable, please paste the output of:
The text was updated successfully, but these errors were encountered: