forked from ml-lab/TensorBox
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
109 lines (93 loc) · 4.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import tensorflow as tf
import os
import json
import subprocess
from scipy.misc import imread, imresize
from scipy import misc
from train import build_forward
from utils.annolist import AnnotationLib as al
from utils.train_utils import add_rectangles, rescale_boxes
import cv2
import argparse
def get_image_dir(args):
weights_iteration = int(args.weights.split('-')[-1])
expname = '_' + args.expname if args.expname else ''
image_dir = '%s/images_%s_%d%s' % (os.path.dirname(args.weights), os.path.basename(args.test_boxes)[:-5], weights_iteration, expname)
return image_dir
def get_results(args, H):
tf.reset_default_graph()
x_in = tf.placeholder(tf.float32, name='x_in', shape=[H['image_height'], H['image_width'], 3])
if H['use_rezoom']:
pred_boxes, pred_logits, pred_confidences, pred_confs_deltas, pred_boxes_deltas = build_forward(H, tf.expand_dims(x_in, 0), 'test', reuse=None)
grid_area = H['grid_height'] * H['grid_width']
pred_confidences = tf.reshape(tf.nn.softmax(tf.reshape(pred_confs_deltas, [grid_area * H['rnn_len'], 2])), [grid_area, H['rnn_len'], 2])
if H['reregress']:
pred_boxes = pred_boxes + pred_boxes_deltas
else:
pred_boxes, pred_logits, pred_confidences = build_forward(H, tf.expand_dims(x_in, 0), 'test', reuse=None)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, args.weights)
pred_annolist = al.AnnoList()
true_annolist = al.parse(args.test_boxes)
data_dir = os.path.dirname(args.test_boxes)
image_dir = get_image_dir(args)
subprocess.call('mkdir -p %s' % image_dir, shell=True)
for i in range(len(true_annolist)):
true_anno = true_annolist[i]
orig_img = imread('%s/%s' % (data_dir, true_anno.imageName))[:,:,:3]
img = imresize(orig_img, (H["image_height"], H["image_width"]), interp='cubic')
feed = {x_in: img}
(np_pred_boxes, np_pred_confidences) = sess.run([pred_boxes, pred_confidences], feed_dict=feed)
pred_anno = al.Annotation()
pred_anno.imageName = true_anno.imageName
new_img, rects = add_rectangles(H, [img], np_pred_confidences, np_pred_boxes,
use_stitching=True, rnn_len=H['rnn_len'], min_conf=args.min_conf, tau=args.tau, show_suppressed=args.show_suppressed)
rects = [r for r in rects if r.x1<r.x2 and r.y1<r.y2]
pred_anno.rects = rects
pred_anno.imagePath = os.path.abspath(data_dir)
pred_anno = rescale_boxes((H["image_height"], H["image_width"]), pred_anno, orig_img.shape[0], orig_img.shape[1])
pred_annolist.append(pred_anno)
imname = '%s/%s' % (image_dir, os.path.basename(true_anno.imageName))
misc.imsave(imname, new_img)
if i % 25 == 0:
print(i)
return pred_annolist, true_annolist
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', required=True)
parser.add_argument('--expname', default='')
parser.add_argument('--test_boxes', required=True)
parser.add_argument('--gpu', default=0)
parser.add_argument('--logdir', default='output')
parser.add_argument('--iou_threshold', default=0.5, type=float)
parser.add_argument('--tau', default=0.25, type=float)
parser.add_argument('--min_conf', default=0.2, type=float)
parser.add_argument('--show_suppressed', default=True, type=bool)
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
hypes_file = '%s/hypes.json' % os.path.dirname(args.weights)
with open(hypes_file, 'r') as f:
H = json.load(f)
expname = args.expname + '_' if args.expname else ''
pred_boxes = '%s.%s%s' % (args.weights, expname, os.path.basename(args.test_boxes))
true_boxes = '%s.gt_%s%s' % (args.weights, expname, os.path.basename(args.test_boxes))
pred_annolist, true_annolist = get_results(args, H)
pred_annolist.save(pred_boxes)
true_annolist.save(true_boxes)
try:
rpc_cmd = './utils/annolist/doRPC.py --minOverlap %f %s %s' % (args.iou_threshold, true_boxes, pred_boxes)
print('$ %s' % rpc_cmd)
rpc_output = subprocess.check_output(rpc_cmd, shell=True)
print(rpc_output)
txt_file = [line for line in rpc_output.split('\n') if line.strip()][-1]
output_png = '%s/results.png' % get_image_dir(args)
plot_cmd = './utils/annolist/plotSimple.py %s --output %s' % (txt_file, output_png)
print('$ %s' % plot_cmd)
plot_output = subprocess.check_output(plot_cmd, shell=True)
print('output results at: %s' % plot_output)
except Exception as e:
print(e)
if __name__ == '__main__':
main()