forked from BoyuanJiang/Age-Gender-Estimate-TF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate_dataset_loader.py
37 lines (33 loc) · 1.45 KB
/
validate_dataset_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import tensorflow as tf
import os
from age_gender.utils.config_parser import get_config
from age_gender.utils.dataloader import init_data_loader
def validate(config):
validation_config = get_config(config, 'dataset_validation')
dataset_config = get_config(config, 'datasets')[
validation_config['dataset']]
batch_size = validation_config['batch']
num_epochs = validation_config['epochs']
next_data_element, train_init_op, train_size = init_data_loader(
batch_size,
dataset_config['full_desc_path'],
dataset_config['images_path'],
dataset_config['balance'], epochs=num_epochs
)
print('dataset_size: ', train_size)
print('train_size // batch_size', train_size // batch_size)
num_batches = train_size // batch_size + \
(train_size % batch_size != 0)
with tf.Graph().as_default() and tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('num_epochs*num_batches', num_epochs*num_batches)
sess.run(train_init_op)
for batch_idx in range(num_epochs*num_batches):
train_images, train_age_labels, train_gender_labels, file_paths = sess.run(
next_data_element)
print(f'batch_inx: {batch_idx}, file_paths_len: {len(file_paths)}')
if __name__ == '__main__':
config = get_config('config.yaml')
if not config['dataset_validation']['cuda']:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
validate(config)