-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathMemCell.cpp
700 lines (654 loc) · 24.9 KB
/
MemCell.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/*******************************************************************************
* Copyright (c) 2012-2013, The Microsystems Design Labratory (MDL)
* Department of Computer Science and Engineering, The Pennsylvania State University
* Exascale Computing Lab, Hewlett-Packard Company
* All rights reserved.
*
* This source code is part of NVSim - An area, timing and power model for both
* volatile (e.g., SRAM, DRAM) and non-volatile memory (e.g., PCRAM, STT-RAM, ReRAM,
* SLC NAND Flash). The source code is free and you can redistribute and/or modify it
* by providing that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author list:
* Cong Xu ( Email: czx102 at psu dot edu
* Website: http://www.cse.psu.edu/~czx102/ )
* Xiangyu Dong ( Email: xydong at cse dot psu dot edu
* Website: http://www.cse.psu.edu/~xydong/ )
*******************************************************************************/
#include "MemCell.h"
#include "formula.h"
#include "global.h"
#include "macros.h"
#include <math.h>
MemCell::MemCell() {
// TODO Auto-generated constructor stub
memCellType = PCRAM;
area = 0;
aspectRatio = 0;
resistanceOn = 0;
resistanceOff = 0;
readMode = true;
readVoltage = 0;
readCurrent = 0;
readPower = 0;
wordlineBoostRatio = 1.0;
resetMode = true;
resetVoltage = 0;
resetCurrent = 0;
minSenseVoltage = 0.08;
resetPulse = 0;
resetEnergy = 0;
setMode = true;
setVoltage = 0;
setCurrent = 0;
setPulse = 0;
accessType = CMOS_access;
processNode = 0;
setEnergy = 0;
/* Optional */
stitching = 0;
gateOxThicknessFactor = 2;
widthSOIDevice = 0;
widthAccessCMOS = 0;
voltageDropAccessDevice = 0;
leakageCurrentAccessDevice = 0;
capDRAMCell = 0;
widthSRAMCellNMOS = 2.08; /* Default NMOS width in SRAM cells is 2.08 (from CACTI) */
widthSRAMCellPMOS = 1.23; /* Default PMOS width in SRAM cells is 1.23 (from CACTI) */
/*For memristors */
readFloating = false;
resistanceOnAtSetVoltage = 0;
resistanceOffAtSetVoltage = 0;
resistanceOnAtResetVoltage = 0;
resistanceOffAtResetVoltage = 0;
resistanceOnAtReadVoltage = 0;
resistanceOffAtReadVoltage = 0;
resistanceOnAtHalfReadVoltage = 0;
resistanceOffAtHalfReadVoltage = 0;
}
MemCell::~MemCell() {
// TODO Auto-generated destructor stub
}
void MemCell::ReadCellFromFile(const string & inputFile)
{
FILE *fp = fopen(inputFile.c_str(), "r");
char line[5000];
char tmp[5000];
if (!fp) {
cout << inputFile << " cannot be found!\n";
exit(-1);
}
while (fscanf(fp, "%[^\n]\n", line) != EOF) {
if (!strncmp("-MemCellType", line, strlen("-MemCellType"))) {
sscanf(line, "-MemCellType: %s", tmp);
if (!strcmp(tmp, "SRAM"))
memCellType = SRAM;
else if (!strcmp(tmp, "DRAM"))
memCellType = DRAM;
else if (!strcmp(tmp, "eDRAM"))
memCellType = eDRAM;
else if (!strcmp(tmp, "MRAM"))
memCellType = MRAM;
else if (!strcmp(tmp, "PCRAM"))
memCellType = PCRAM;
else if (!strcmp(tmp, "FBRAM"))
memCellType = FBRAM;
else if (!strcmp(tmp, "memristor"))
memCellType = memristor;
else if (!strcmp(tmp, "SLCNAND"))
memCellType = SLCNAND;
else
memCellType = MLCNAND;
continue;
}
if (!strncmp("-ProcessNode", line, strlen("-ProcessNode"))) {
sscanf(line, "-ProcessNode: %d", &processNode);
continue;
}
if (!strncmp("-CellArea", line, strlen("-CellArea"))) {
sscanf(line, "-CellArea (F^2): %lf", &area);
continue;
}
if (!strncmp("-CellAspectRatio", line, strlen("-CellAspectRatio"))) {
sscanf(line, "-CellAspectRatio: %lf", &aspectRatio);
heightInFeatureSize = sqrt(area * aspectRatio);
widthInFeatureSize = sqrt(area / aspectRatio);
continue;
}
if (!strncmp("-ResistanceOnAtSetVoltage", line, strlen("-ResistanceOnAtSetVoltage"))) {
sscanf(line, "-ResistanceOnAtSetVoltage (ohm): %lf", &resistanceOnAtSetVoltage);
continue;
}
if (!strncmp("-ResistanceOffAtSetVoltage", line, strlen("-ResistanceOffAtSetVoltage"))) {
sscanf(line, "-ResistanceOffAtSetVoltage (ohm): %lf", &resistanceOffAtSetVoltage);
continue;
}
if (!strncmp("-ResistanceOnAtResetVoltage", line, strlen("-ResistanceOnAtResetVoltage"))) {
sscanf(line, "-ResistanceOnAtResetVoltage (ohm): %lf", &resistanceOnAtResetVoltage);
continue;
}
if (!strncmp("-ResistanceOffAtResetVoltage", line, strlen("-ResistanceOffAtResetVoltage"))) {
sscanf(line, "-ResistanceOffAtResetVoltage (ohm): %lf", &resistanceOffAtResetVoltage);
continue;
}
if (!strncmp("-ResistanceOnAtReadVoltage", line, strlen("-ResistanceOnAtReadVoltage"))) {
sscanf(line, "-ResistanceOnAtReadVoltage (ohm): %lf", &resistanceOnAtReadVoltage);
resistanceOn = resistanceOnAtReadVoltage;
continue;
}
if (!strncmp("-ResistanceOffAtReadVoltage", line, strlen("-ResistanceOffAtReadVoltage"))) {
sscanf(line, "-ResistanceOffAtReadVoltage (ohm): %lf", &resistanceOffAtReadVoltage);
resistanceOff = resistanceOffAtReadVoltage;
continue;
}
if (!strncmp("-ResistanceOnAtHalfReadVoltage", line, strlen("-ResistanceOnAtHalfReadVoltage"))) {
sscanf(line, "-ResistanceOnAtHalfReadVoltage (ohm): %lf", &resistanceOnAtHalfReadVoltage);
continue;
}
if (!strncmp("-ResistanceOffAtHalfReadVoltage", line, strlen("-ResistanceOffAtHalfReadVoltage"))) {
sscanf(line, "-ResistanceOffAtHalfReadVoltage (ohm): %lf", &resistanceOffAtHalfReadVoltage);
continue;
}
if (!strncmp("-ResistanceOnAtHalfResetVoltage", line, strlen("-ResistanceOnAtHalfResetVoltage"))) {
sscanf(line, "-ResistanceOnAtHalfResetVoltage (ohm): %lf", &resistanceOnAtHalfResetVoltage);
continue;
}
if (!strncmp("-ResistanceOn", line, strlen("-ResistanceOn"))) {
sscanf(line, "-ResistanceOn (ohm): %lf", &resistanceOn);
continue;
}
if (!strncmp("-ResistanceOff", line, strlen("-ResistanceOff"))) {
sscanf(line, "-ResistanceOff (ohm): %lf", &resistanceOff);
continue;
}
if (!strncmp("-CapacitanceOn", line, strlen("-CapacitanceOn"))) {
sscanf(line, "-CapacitanceOn (F): %lf", &capacitanceOn);
continue;
}
if (!strncmp("-CapacitanceOff", line, strlen("-CapacitanceOff"))) {
sscanf(line, "-CapacitanceOff (F): %lf", &capacitanceOff);
continue;
}
if (!strncmp("-GateOxThicknessFactor", line, strlen("-GateOxThicknessFactor"))) {
sscanf(line, "-GateOxThicknessFactor: %lf", &gateOxThicknessFactor);
continue;
}
if (!strncmp("-SOIDeviceWidth (F)", line, strlen("-SOIDeviceWidth (F)"))) {
sscanf(line, "-SOIDeviceWidth (F): %lf", &widthSOIDevice);
continue;
}
if (!strncmp("-ReadMode", line, strlen("-ReadMode"))) {
sscanf(line, "-ReadMode: %s", tmp);
if (!strcmp(tmp, "voltage"))
readMode = true;
else
readMode = false;
continue;
}
if (!strncmp("-ReadVoltage", line, strlen("-ReadVoltage"))) {
sscanf(line, "-ReadVoltage (V): %lf", &readVoltage);
continue;
}
if (!strncmp("-ReadCurrent", line, strlen("-ReadCurrent"))) {
sscanf(line, "-ReadCurrent (uA): %lf", &readCurrent);
readCurrent /= 1e6;
continue;
}
if (!strncmp("-ReadPower", line, strlen("-ReadPower"))) {
sscanf(line, "-ReadPower (uW): %lf", &readPower);
readPower /= 1e6;
continue;
}
if (!strncmp("-WordlineBoostRatio", line, strlen("-WordlineBoostRatio"))) {
sscanf(line, "-WordlineBoostRatio: %lf", &wordlineBoostRatio);
continue;
}
if (!strncmp("-MinSenseVoltage", line, strlen("-MinSenseVoltage"))) {
sscanf(line, "-MinSenseVoltage (mV): %lf", &minSenseVoltage);
minSenseVoltage /= 1e3;
continue;
}
if (!strncmp("-ResetMode", line, strlen("-ResetMode"))) {
sscanf(line, "-ResetMode: %s", tmp);
if (!strcmp(tmp, "voltage"))
resetMode = true;
else
resetMode = false;
continue;
}
if (!strncmp("-ResetVoltage", line, strlen("-ResetVoltage"))) {
sscanf(line, "-ResetVoltage (V): %lf", &resetVoltage);
continue;
}
if (!strncmp("-ResetCurrent", line, strlen("-ResetCurrent"))) {
sscanf(line, "-ResetCurrent (uA): %lf", &resetCurrent);
resetCurrent /= 1e6;
continue;
}
if (!strncmp("-ResetVoltage", line, strlen("-ResetVoltage"))) {
sscanf(line, "-ResetVoltage (V): %lf", &resetVoltage);
continue;
}
if (!strncmp("-ResetPulse", line, strlen("-ResetPulse"))) {
sscanf(line, "-ResetPulse (ns): %lf", &resetPulse);
resetPulse /= 1e9;
continue;
}
if (!strncmp("-ResetEnergy", line, strlen("-ResetEnergy"))) {
sscanf(line, "-ResetEnergy (pJ): %lf", &resetEnergy);
resetEnergy /= 1e12;
continue;
}
if (!strncmp("-SetMode", line, strlen("-SetMode"))) {
sscanf(line, "-SetMode: %s", tmp);
if (!strcmp(tmp, "voltage"))
setMode = true;
else
setMode = false;
continue;
}
if (!strncmp("-SetVoltage", line, strlen("-SetVoltage"))) {
sscanf(line, "-SetVoltage (V): %lf", &setVoltage);
continue;
}
if (!strncmp("-SetCurrent", line, strlen("-SetCurrent"))) {
sscanf(line, "-SetCurrent (uA): %lf", &setCurrent);
setCurrent /= 1e6;
continue;
}
if (!strncmp("-SetVoltage", line, strlen("-SetVoltage"))) {
sscanf(line, "-SetVoltage (V): %lf", &setVoltage);
continue;
}
if (!strncmp("-SetPulse", line, strlen("-SetPulse"))) {
sscanf(line, "-SetPulse (ns): %lf", &setPulse);
setPulse /= 1e9;
continue;
}
if (!strncmp("-SetEnergy", line, strlen("-SetEnergy"))) {
sscanf(line, "-SetEnergy (pJ): %lf", &setEnergy);
setEnergy /= 1e12;
continue;
}
if (!strncmp("-AccessType", line, strlen("-AccessType"))) {
sscanf(line, "-AccessType: %s", tmp);
if (!strcmp(tmp, "CMOS"))
accessType = CMOS_access;
else if (!strcmp(tmp, "BJT"))
accessType = BJT_access;
else if (!strcmp(tmp, "diode"))
accessType = diode_access;
else
accessType = none_access;
continue;
}
if (!strncmp("-AccessCMOSWidth", line, strlen("-AccessCMOSWidth"))) {
if (accessType != CMOS_access)
cout << "Warning: The input of CMOS access transistor width is ignored because the cell is not CMOS-accessed." << endl;
else
sscanf(line, "-AccessCMOSWidth (F): %lf", &widthAccessCMOS);
continue;
}
if (!strncmp("-VoltageDropAccessDevice", line, strlen("-VoltageDropAccessDevice"))) {
sscanf(line, "-VoltageDropAccessDevice (V): %lf", &voltageDropAccessDevice);
continue;
}
if (!strncmp("-LeakageCurrentAccessDevice", line, strlen("-LeakageCurrentAccessDevice"))) {
sscanf(line, "-LeakageCurrentAccessDevice (uA): %lf", &leakageCurrentAccessDevice);
leakageCurrentAccessDevice /= 1e6;
continue;
}
if (!strncmp("-DRAMCellCapacitance", line, strlen("-DRAMCellCapacitance"))) {
if (memCellType != DRAM && memCellType != eDRAM)
cout << "Warning: The input of DRAM cell capacitance is ignored because the memory cell is not DRAM." << endl;
else
sscanf(line, "-DRAMCellCapacitance (F): %lf", &capDRAMCell);
continue;
}
if (!strncmp("-SRAMCellNMOSWidth", line, strlen("-SRAMCellNMOSWidth"))) {
if (memCellType != SRAM)
cout << "Warning: The input of SRAM cell NMOS width is ignored because the memory cell is not SRAM." << endl;
else
sscanf(line, "-SRAMCellNMOSWidth (F): %lf", &widthSRAMCellNMOS);
continue;
}
if (!strncmp("-SRAMCellPMOSWidth", line, strlen("-SRAMCellPMOSWidth"))) {
if (memCellType != SRAM)
cout << "Warning: The input of SRAM cell PMOS width is ignored because the memory cell is not SRAM." << endl;
else
sscanf(line, "-SRAMCellPMOSWidth (F): %lf", &widthSRAMCellPMOS);
continue;
}
if (!strncmp("-ReadFloating", line, strlen("-ReadFloating"))) {
sscanf(line, "-ReadFloating: %s", tmp);
if (!strcmp(tmp, "true"))
readFloating = true;
else
readFloating = false;
continue;
}
if (!strncmp("-FlashEraseVoltage (V)", line, strlen("-FlashEraseVoltage (V)"))) {
if (memCellType != SLCNAND && memCellType != MLCNAND)
cout << "Warning: The input of programming/erase voltage is ignored because the memory cell is not flash." << endl;
else
sscanf(line, "-FlashEraseVoltage (V): %lf", &flashEraseVoltage);
continue;
}
if (!strncmp("-FlashProgramVoltage (V)", line, strlen("-FlashProgramVoltage (V)"))) {
if (memCellType != SLCNAND && memCellType != MLCNAND)
cout << "Warning: The input of programming/program voltage is ignored because the memory cell is not flash." << endl;
else
sscanf(line, "-FlashProgramVoltage (V): %lf", &flashProgramVoltage);
continue;
}
if (!strncmp("-FlashPassVoltage (V)", line, strlen("-FlashPassVoltage (V)"))) {
if (memCellType != SLCNAND && memCellType != MLCNAND)
cout << "Warning: The input of pass voltage is ignored because the memory cell is not flash." << endl;
else
sscanf(line, "-FlashPassVoltage (V): %lf", &flashPassVoltage);
continue;
}
if (!strncmp("-FlashEraseTime", line, strlen("-FlashEraseTime"))) {
if (memCellType != SLCNAND && memCellType != MLCNAND)
cout << "Warning: The input of erase time is ignored because the memory cell is not flash." << endl;
else {
sscanf(line, "-FlashEraseTime (ms): %lf", &flashEraseTime);
flashEraseTime /= 1e3;
}
continue;
}
if (!strncmp("-FlashProgramTime", line, strlen("-FlashProgramTime"))) {
if (memCellType != SLCNAND && memCellType != MLCNAND)
cout << "Warning: The input of erase time is ignored because the memory cell is not flash." << endl;
else {
sscanf(line, "-FlashProgramTime (us): %lf", &flashProgramTime);
flashProgramTime /= 1e6;
}
continue;
}
if (!strncmp("-GateCouplingRatio", line, strlen("-GateCouplingRatio"))) {
if (memCellType != SLCNAND && memCellType != MLCNAND)
cout << "Warning: The input of gate coupling ratio (GCR) is ignored because the memory cell is not flash." << endl;
else {
sscanf(line, "-GateCouplingRatio: %lf", &gateCouplingRatio);
}
continue;
}
}
fclose(fp);
}
void MemCell::CellScaling(int _targetProcessNode) {
if ((processNode > 0) && (processNode != _targetProcessNode)) {
double scalingFactor = (double)processNode / _targetProcessNode;
if (memCellType == PCRAM) {
resistanceOn *= scalingFactor;
resistanceOff *= scalingFactor;
if (!setMode) {
setCurrent /= scalingFactor;
} else {
setVoltage *= 1;
}
if (!resetMode) {
resetCurrent /= scalingFactor;
} else {
resetVoltage *= 1;
}
if (accessType == diode_access) {
capacitanceOn /= scalingFactor; //TO-DO
capacitanceOff /= scalingFactor; //TO-DO
}
} else if (memCellType == MRAM){ //TO-DO: MRAM
resistanceOn *= scalingFactor * scalingFactor;
resistanceOff *= scalingFactor * scalingFactor;
if (!setMode) {
setCurrent /= scalingFactor;
} else {
setVoltage *= scalingFactor;
}
if (!resetMode) {
resetCurrent /= scalingFactor;
} else {
resetVoltage *= scalingFactor;
}
if (accessType == diode_access) {
capacitanceOn /= scalingFactor; //TO-DO
capacitanceOff /= scalingFactor; //TO-DO
}
} else if (memCellType == memristor) { //TO-DO: memristor
} else { //TO-DO: other RAMs
}
processNode = _targetProcessNode;
}
}
double MemCell::GetMemristance(double _relativeReadVoltage) { /* Get the LRS resistance of memristor at log-linera region of I-V curve */
if (memCellType == memristor) {
double x1, x2, x3; // x1: read voltage, x2: half voltage, x3: applied voltage
if (readVoltage == 0) {
x1 = readCurrent * resistanceOnAtReadVoltage;
} else {
x1 = readVoltage;
}
x2 = readVoltage / 2;
x3 = _relativeReadVoltage * readVoltage;
double y1, y2 ,y3; // y1:log(read current), y2: log(leakage current at half read voltage
y1 = log2(x1/resistanceOnAtReadVoltage);
y2 = log2(x2/resistanceOnAtHalfReadVoltage);
y3 = (y2 - y1) / (x2 -x1) * x3 + (x2 * y1 - x1 * y2) / (x2 - x1); //insertion
return x3 / pow(2, y3);
} else { // not memristor, can't call the function
cout <<"Warning[MemCell] : Try to get memristance from a non-memristor memory cell" << endl;
return -1;
}
}
void MemCell::CalculateWriteEnergy() {
if (resetEnergy == 0) {
if (resetMode) {
if (memCellType == memristor)
if (accessType == none_access)
resetEnergy = fabs(resetVoltage) * (fabs(resetVoltage) - voltageDropAccessDevice) / resistanceOnAtResetVoltage * resetPulse;
else
resetEnergy = fabs(resetVoltage) * (fabs(resetVoltage) - voltageDropAccessDevice) / resistanceOn * resetPulse;
else if (memCellType == PCRAM)
resetEnergy = fabs(resetVoltage) * (fabs(resetVoltage) - voltageDropAccessDevice) / resistanceOn * resetPulse; // PCM cells shows low resistance during most time of the switching
else if (memCellType == FBRAM)
resetEnergy = fabs(resetVoltage) * fabs(resetCurrent) * resetPulse;
else
resetEnergy = fabs(resetVoltage) * (fabs(resetVoltage) - voltageDropAccessDevice) / resistanceOn * resetPulse;
} else {
if (resetVoltage == 0){
resetEnergy = tech->vdd * fabs(resetCurrent) * resetPulse; /*TO-DO consider charge pump*/
} else {
resetEnergy = fabs(resetVoltage) * fabs(resetCurrent) * resetPulse;
}
/* previous model seems to be problematic
if (memCellType == memristor)
if (accessType == none_access)
resetEnergy = resetCurrent * (resetCurrent * resistanceOffAtResetVoltage + voltageDropAccessDevice) * resetPulse;
else
resetEnergy = resetCurrent * (resetCurrent * resistanceOff + voltageDropAccessDevice) * resetPulse;
else if (memCellType == PCRAM)
resetEnergy = resetCurrent * (resetCurrent * resistanceOn + voltageDropAccessDevice) * resetPulse; // PCM cells shows low resistance during most time of the switching
else if (memCellType == FBRAM)
resetEnergy = fabs(resetVoltage) * fabs(resetCurrent) * resetPulse;
else
resetEnergy = resetCurrent * (resetCurrent * resistanceOff + voltageDropAccessDevice) * resetPulse;
*/
}
}
if (setEnergy == 0) {
if (setMode) {
if (memCellType == memristor)
if (accessType == none_access)
setEnergy = fabs(setVoltage) * (fabs(setVoltage) - voltageDropAccessDevice) / resistanceOnAtSetVoltage * setPulse;
else
setEnergy = fabs(setVoltage) * (fabs(setVoltage) - voltageDropAccessDevice) / resistanceOn * setPulse;
else if (memCellType == PCRAM)
setEnergy = fabs(setVoltage) * (fabs(setVoltage) - voltageDropAccessDevice) / resistanceOn * setPulse; // PCM cells shows low resistance during most time of the switching
else if (memCellType == FBRAM)
setEnergy = fabs(setVoltage) * fabs(setCurrent) * setPulse;
else
setEnergy = fabs(setVoltage) * (fabs(setVoltage) - voltageDropAccessDevice) / resistanceOn * setPulse;
} else {
if (resetVoltage == 0){
setEnergy = tech->vdd * fabs(setCurrent) * setPulse; /*TO-DO consider charge pump*/
} else {
setEnergy = fabs(setVoltage) * fabs(setCurrent) * setPulse;
}
/* previous model seems to be problematic
if (memCellType == memristor)
if (accessType == none_access)
setEnergy = setCurrent * (setCurrent * resistanceOffAtSetVoltage + voltageDropAccessDevice) * setPulse;
else
setEnergy = setCurrent * (setCurrent * resistanceOff + voltageDropAccessDevice) * setPulse;
else if (memCellType == PCRAM)
setEnergy = setCurrent * (setCurrent * resistanceOn + voltageDropAccessDevice) * setPulse; // PCM cells shows low resistance during most time of the switching
else if (memCellType == FBRAM)
setEnergy = fabs(setVoltage) * fabs(setCurrent) * setPulse;
else
setEnergy = setCurrent * (setCurrent * resistanceOff + voltageDropAccessDevice) * setPulse;
*/
}
}
}
double MemCell::CalculateReadPower() { /* TO-DO consider charge pumped read voltage */
if (readPower == 0) {
if (cell->readMode) { /* voltage-sensing */
if (readVoltage == 0) { /* Current-in voltage sensing */
return tech->vdd * readCurrent;
}
if (readCurrent == 0) { /*Voltage-divider sensing */
double resInSerialForSenseAmp, maxBitlineCurrent;
resInSerialForSenseAmp = sqrt(resistanceOn * resistanceOff);
maxBitlineCurrent = (readVoltage - voltageDropAccessDevice) / (resistanceOn + resInSerialForSenseAmp);
return tech->vdd * maxBitlineCurrent;
}
} else { /* current-sensing */
double maxBitlineCurrent = (readVoltage - voltageDropAccessDevice) / resistanceOn;
return tech->vdd * maxBitlineCurrent;
}
} else {
return -1.0; /* should not call the function if read energy exists */
}
return -1.0;
}
void MemCell::PrintCell()
{
switch (memCellType) {
case SRAM:
cout << "Memory Cell: SRAM" << endl;
break;
case DRAM:
cout << "Memory Cell: DRAM" << endl;
break;
case eDRAM:
cout << "Memory Cell: Embedded DRAM" << endl;
break;
case MRAM:
cout << "Memory Cell: MRAM (Magnetoresistive)" << endl;
break;
case PCRAM:
cout << "Memory Cell: PCRAM (Phase-Change)" << endl;
break;
case memristor:
cout << "Memory Cell: RRAM (Memristor)" << endl;
break;
case FBRAM:
cout << "Memory Cell: FBRAM (Floating Body)" <<endl;
break;
case SLCNAND:
cout << "Memory Cell: Single-Level Cell NAND Flash" << endl;
break;
case MLCNAND:
cout << "Memory Cell: Multi-Level Cell NAND Flash" << endl;
break;
default:
cout << "Memory Cell: Unknown" << endl;
}
cout << "Cell Area (F^2) : " << area << " (" << heightInFeatureSize << "Fx" << widthInFeatureSize << "F)" << endl;
cout << "Cell Aspect Ratio : " << aspectRatio << endl;
if (memCellType == PCRAM || memCellType == MRAM || memCellType == memristor || memCellType == FBRAM) {
if (resistanceOn < 1e3 )
cout << "Cell Turned-On Resistance : " << resistanceOn << "ohm" << endl;
else if (resistanceOn < 1e6)
cout << "Cell Turned-On Resistance : " << resistanceOn / 1e3 << "Kohm" << endl;
else
cout << "Cell Turned-On Resistance : " << resistanceOn / 1e6 << "Mohm" << endl;
if (resistanceOff < 1e3 )
cout << "Cell Turned-Off Resistance: "<< resistanceOff << "ohm" << endl;
else if (resistanceOff < 1e6)
cout << "Cell Turned-Off Resistance: "<< resistanceOff / 1e3 << "Kohm" << endl;
else
cout << "Cell Turned-Off Resistance: "<< resistanceOff / 1e6 << "Mohm" << endl;
if (readMode) {
cout << "Read Mode: Voltage-Sensing" << endl;
if (readCurrent > 0)
cout << " - Read Current: " << readCurrent * 1e6 << "uA" << endl;
if (readVoltage > 0)
cout << " - Read Voltage: " << readVoltage << "V" << endl;
} else {
cout << "Read Mode: Current-Sensing" << endl;
if (readCurrent > 0)
cout << " - Read Current: " << readCurrent * 1e6 << "uA" << endl;
if (readVoltage > 0)
cout << " - Read Voltage: " << readVoltage << "V" << endl;
}
if (resetMode) {
cout << "Reset Mode: Voltage" << endl;
cout << " - Reset Voltage: " << resetVoltage << "V" << endl;
} else {
cout << "Reset Mode: Current" << endl;
cout << " - Reset Current: " << resetCurrent * 1e6 << "uA" << endl;
}
cout << " - Reset Pulse: " << TO_SECOND(resetPulse) << endl;
if (setMode) {
cout << "Set Mode: Voltage" << endl;
cout << " - Set Voltage: " << setVoltage << "V" << endl;
} else {
cout << "Set Mode: Current" << endl;
cout << " - Set Current: " << setCurrent * 1e6 << "uA" << endl;
}
cout << " - Set Pulse: " << TO_SECOND(setPulse) << endl;
switch (accessType) {
case CMOS_access:
cout << "Access Type: CMOS" << endl;
break;
case BJT_access:
cout << "Access Type: BJT" << endl;
break;
case diode_access:
cout << "Access Type: Diode" << endl;
break;
default:
cout << "Access Type: None Access Device" << endl;
}
} else if (memCellType == SRAM) {
cout << "SRAM Cell Access Transistor Width: " << widthAccessCMOS << "F" << endl;
cout << "SRAM Cell NMOS Width: " << widthSRAMCellNMOS << "F" << endl;
cout << "SRAM Cell PMOS Width: " << widthSRAMCellPMOS << "F" << endl;
} else if (memCellType == SLCNAND) {
cout << "Pass Voltage : " << flashPassVoltage << "V" << endl;
cout << "Programming Voltage: " << flashProgramVoltage << "V" << endl;
cout << "Erase Voltage : " << flashEraseVoltage << "V" << endl;
cout << "Programming Time : " << TO_SECOND(flashProgramTime) << endl;
cout << "Erase Time : " << TO_SECOND(flashEraseTime) << endl;
cout << "Gate Coupling Ratio: " << gateCouplingRatio << endl;
}
}