This project leverages Langchain, RAG, Cohere Embedding, Chroma DB, LLama3, and Ollama to create a YouTube Chatbot. The chatbot can summarize YouTube videos and answer questions based on the video's transcript.
- Video Summarization: Generate concise summaries of YouTube videos.
- Question Answering: Answer questions related to the content of YouTube videos using their transcripts.
- Advanced Embeddings: Utilize Cohere Embedding for efficient and accurate text representation.
- Robust Vector Database: Store and retrieve data using Chroma DB.
- Powerful Language Models: Employ LLama3 and Ollama for natural language understanding and generation.
- Clone the repository:
git clone https://github.com/SOURABHMISHRA5221/YoutubeVideoChatBotLLM.git cd YoutubeVideoChatBotLLM
- Run the main script:
pip install -r requirements.txt python ChatBot.py
- Interact with the chatbot through the provided interface.
- Make sure to add .env file. Ensure that the .env file contains the correct values for:
- MODEL_URL (the URL for your LLama3 or Ollama model)
- COHERE_API_KEY (your API key for Cohere embeddings)
- Langchain
- Cohere
- Chroma DB
- LLama3
- Ollama