-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Transformerモデルを作るスクリプトを追加(積極的に使う予定はなし)
- Loading branch information
1 parent
08f3fd1
commit a493cad
Showing
1 changed file
with
81 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
#!/usr/bin/env python3 | ||
import argparse | ||
|
||
import torch | ||
import torch.jit | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
N_HEAD = 8 | ||
VALUE_HIDDEN_NUM = 256 | ||
BIN_SIZE = 51 | ||
|
||
|
||
class TransformerModel(nn.Module): | ||
def __init__(self, input_channel_num, layer_num, channel_num, policy_channel_num, board_size): | ||
super(TransformerModel, self).__init__() | ||
self.first_encoding_ = torch.nn.Linear(input_channel_num, channel_num) | ||
encoder_layer = torch.nn.TransformerEncoderLayer(channel_num, N_HEAD) | ||
self.encoder_ = torch.nn.TransformerEncoder(encoder_layer, layer_num) | ||
self.board_size = board_size | ||
square_num = board_size ** 2 | ||
self.policy_head_ = torch.nn.Linear(square_num * channel_num, square_num * policy_channel_num) | ||
self.value_linear0_ = torch.nn.Linear(square_num * channel_num, VALUE_HIDDEN_NUM) | ||
self.value_linear1_ = torch.nn.Linear(VALUE_HIDDEN_NUM, BIN_SIZE) | ||
self.positional_encoding_ = torch.nn.Parameter(torch.randn([square_num, 1, channel_num]), requires_grad=True) | ||
|
||
def encode(self, x): | ||
x = x.view([x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]) | ||
x = x.permute([2, 0, 1]) | ||
x = self.first_encoding_(x) | ||
x = F.relu(x) | ||
x = x + self.positional_encoding_ | ||
x = self.encoder_(x) | ||
x = x.permute([1, 2, 0]) | ||
|
||
x = x.view([x.shape[0], x.shape[1], self.board_size, self.board_size]) | ||
return x | ||
|
||
def decode(self, representation): | ||
flattened = representation.flatten(1) | ||
policy = self.policy_head_(flattened) | ||
value = self.value_linear0_(flattened) | ||
value = F.relu(value) | ||
value = self.value_linear1_(value) | ||
|
||
return policy, value | ||
|
||
def forward(self, x): | ||
return self.decode(self.encode(x)) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-game", default="shogi", choices=["shogi", "othello"]) | ||
parser.add_argument("-value_type", default="cat", choices=["sca", "cat"]) | ||
parser.add_argument("--layer_num", type=int, default=10) | ||
parser.add_argument("--channel_num", type=int, default=256) | ||
args = parser.parse_args() | ||
|
||
if args.game == "shogi": | ||
input_channel_num = 42 | ||
board_size = 9 | ||
policy_channel_num = 27 | ||
elif args.game == "othello": | ||
input_channel_num = 2 | ||
board_size = 8 | ||
policy_channel_num = 2 | ||
else: | ||
exit(1) | ||
|
||
model = TransformerModel(input_channel_num, args.layer_num, args.channel_num, policy_channel_num, board_size) | ||
input_data = torch.randn([8, input_channel_num, board_size, board_size]) | ||
script_model = torch.jit.trace(model, input_data) | ||
script_model = torch.jit.script(model) | ||
model_path = f"./{args.game}_transformer_cat_layer{args.layer_num}_ch{args.channel_num}.model" | ||
script_model.save(model_path) | ||
print(f"{model_path}にパラメータを保存") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |