Skip to content

Commit 47212a1

Browse files
committed
Fix typos
1 parent 3c7a24c commit 47212a1

File tree

1 file changed

+19
-20
lines changed

1 file changed

+19
-20
lines changed

firk/main.tex

Lines changed: 19 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ \section{Runge-Kutta Methods}
5050
\end{align}
5151
\end{definition}
5252

53-
We observe that when $a_{ij} = 0$ for each $i\ge j$, \cref{eq:rk_lin} can be
53+
We observe that when $a_{ij} = 0$ for each $j\ge i$, \cref{eq:rk_lin} can be
5454
computed without solving a system of algebraic equations, and we call methods
5555
with this property \emph{explicit} otherwise \emph{implicit}.
5656

@@ -115,8 +115,8 @@ \subsection{Change of Basis}
115115
\begin{equation}
116116
V^{-1}A^{-1}V = \Lambda,
117117
\end{equation}
118-
to decouple the $sm \times sm$ system. To transforming \cref{eq:newton1} to
119-
the eigenbasis of $A^{-1}$, notice
118+
to decouple the $sm \times sm$ system. To transform \cref{eq:newton1} to the
119+
eigenbasis of $A^{-1}$, notice
120120
\begin{equation}
121121
A^{-1}x = b \implies V^{-1}A^{-1}x = V^{-1}b \implies \Lambda V^{-1}x =
122122
V^{-1}b.
@@ -128,7 +128,7 @@ \subsection{Change of Basis}
128128
\bm{z}^k + \tilde{\bm{f}}(\bm{z}^k)).
129129
\end{align}
130130
We can introduce the transformed variable $\bm{w} = (V^{-1}\otimes I_m) \bm{z}$
131-
to further reduce computation, so \cref{eq:newton1} and \cref{eq:newton2} is now
131+
to further reduce computation, so \cref{eq:newton_1} and \cref{eq:newton_2} is now
132132
\begin{align} \label{eq:newton2}
133133
(h^{-1} \Lambda \otimes M - I_s\otimes J) \Delta\bm{w}^k
134134
&= -(h^{-1} \Lambda \otimes M) \bm{w}^k +
@@ -140,16 +140,15 @@ \subsection{Change of Basis}
140140

141141
\subsection{Stopping Criteria}
142142
Note that throughout this subsection, $\norm{\cdot}$ denotes the norm that is
143-
used by the time-stepping error estimate. We are using this choice because we
144-
need to make sure that convergent results from a nonlinear solver does not
145-
introduce step rejections.
143+
used by the time-stepping error estimate. By doing so, we can be confident that
144+
convergent results from a nonlinear solver do not introduce step rejections.
146145

147146
There are two approaches to estimate the error of a nonlinear solver, by the
148147
displacement $\Delta \bm{z}^k$ or by the residual $G(\bm{z}^k)$. The residual
149148
behaves like the error scaled by the Lipschitz constant of $G$. Stiff equations
150-
have a large Lipschitz constant. However, this constant is not known a prior.
151-
This makes the residual test unreliable. Hence, we are going to focus on the
152-
analysis of the displacement.
149+
have a large Lipschitz constant, furthermore, this constant is not known a
150+
priori. This makes the residual test unreliable. Hence, we are going to focus on
151+
the analysis of the displacement.
153152

154153
Simplified Newton iteration converges linearly, so we can model the convergence
155154
process as
@@ -171,16 +170,16 @@ \subsection{Stopping Criteria}
171170
\norm{\Delta\bm{z}^{k}}\sum_{i=0}^\infty \theta^i = \frac{\theta}{1-\theta}
172171
\norm{\Delta\bm{z}^{k}}.
173172
\end{equation}
174-
To ensure nonlinear solver error does not cause that step rejection, we need a
173+
To ensure the nonlinear solver error does not cause step rejections, we need a
175174
safety factor $\kappa = 1/10$. Our first convergence criterion is
176175
\begin{equation}
177176
\eta_k \norm{\Delta\bm{z}^k} \le \kappa, \qq{if}
178177
k \ge 1 \text{ and } \theta \le 1, ~ \eta_k=\frac{\theta_k}{1-\theta_k}.
179178
\end{equation}
180-
One major drawback with this convergence criterion is that we can only check it
181-
after two iterations. To cover the case of convergence in the first iteration,
182-
we need to define $\eta_0$. It is reasonable to believe that the convergence
183-
rate remains relatively constant with the same $W$-matrix, so if $W$ is reused
179+
One major drawback with this criterion is that we can only check it after one
180+
iteration. To cover the case of convergence in the first iteration, we need to
181+
define $\eta_0$. It is reasonable to believe that the convergence rate remains
182+
relatively constant with the same $W$-matrix, so if $W$ is reused
184183
\todo[inline]{Add the reuse logic section} from the previous nonlinear solve,
185184
then we define
186185
\begin{equation}
@@ -206,18 +205,18 @@ \subsection{Stopping Criteria}
206205
\end{equation}
207206
Also, the algorithm diverges if the max number of iterations is reached without
208207
convergence. A subtler criterion for divergence is: no convergence is predicted
209-
by extrapolating to $\norm{\Delta\bm{z}^k_{\max}}$, e.g.
208+
by extrapolating to $\norm{\Delta\bm{z}^k_{\max}}$, i.e.
210209
\begin{equation}
211210
\frac{\theta_k^{k_{\max}-k}}{1-\theta_k} \norm{\Delta\bm{z}^k} > \kappa.
212211
\end{equation}
213212
\todo[inline]{OrdinaryDiffEq.jl doesn't actually check this condition anymore.}
214213

215-
\subsection{$W$-matrix reuse}
214+
\subsection{$W$-matrix Reuse}
216215

217-
\section{Step size control}
218-
\subsection{Standard (Integral) control}
219-
\subsection{Predictive (modified PI) control}
216+
\section{Step Size Control}
220217
\subsection{Smooth Error Estimation}
218+
\subsection{Standard (Integral) Control}
219+
\subsection{Predictive (Modified PI) Control}
221220

222221
\nocite{hairer2010solving}
223222

0 commit comments

Comments
 (0)