-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssl_dataset.py
301 lines (239 loc) · 10.2 KB
/
ssl_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
from utils import split_ssl_data
from randaugment import RandAugment
from PIL import Image
import numpy as np
import copy
import torchvision
from torchvision import transforms
from torch.utils.data import Dataset
from PIL import Image, ImageEnhance
import PIL
import random
mean, std = {}, {}
mean['cifar10'] = [x / 255 for x in [125.3, 123.0, 113.9]]
std['cifar10'] = [x / 255 for x in [63.0, 62.1, 66.7]]
def get_transform(mean, std, transform_list, train=True):
if train:
trs = transforms.Compose([transform_list[key] for key in transform_list])
print("Weak augmentation: ")
print(trs)
return trs
else:
return transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean, std)])
def construct_transforms(mean, std, args):
# flip and crop are on by default
transform_list = {'flip': transforms.RandomHorizontalFlip(), 'crop': transforms.RandomCrop(32, padding=4)}
# parse arguments
if args.translate:
transform_list['translate_x'] = Translate_x()
transform_list['translate_y'] = Translate_y()
if args.contrast:
transform_list['contrast'] = AddContrast()
# tensor and normalize are on by default
transform_list['to_tensor'] = transforms.ToTensor()
transform_list['normalize'] = transforms.Normalize(mean, std)
# noise addition happens to a tensor not an image, hence must be last
if args.noise:
transform_list['noise'] = AddGaussianNoise(std=0.03)
return transform_list
class Translate_x(object):
"""
Performs affine translation of the IMG object along the x-axis
"""
def __init__(self, magnitude=0.125):
v = random.uniform(0, magnitude)
v = v * random.choice([-1, 1])
self.v = v
def __call__(self, img):
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, self.v * img.size[0], 0, 1, 0))
def __repr__(self):
return self.__class__.__name__ + '(v={})'.format(self.v)
class Translate_y(object):
"""
Performs affine translation of the IMG object along the y-axis
"""
def __init__(self, magnitude=0.125):
v = random.uniform(0, magnitude)
v = v * random.choice([-1, 1])
self.v = v
def __call__(self, img):
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, self.v * img.size[1]))
def __repr__(self):
return self.__class__.__name__ + '(v={})'.format(self.v)
class AddGaussianNoise(object):
"""
Adds gaussian noise to the tensor of the image
"""
def __init__(self, mean=0., std=1.):
self.std = std
self.mean = mean
def __call__(self, tensor):
return tensor + torch.randn(tensor.size()) * self.std + self.mean
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
class AddContrast(object):
def __init__(self, min_val=0.65, max_val=1.0):
v = random.uniform(min_val, max_val)
self.v = v
def __call__(self, img):
return ImageEnhance.Contrast(img).enhance(self.v)
def __repr__(self):
return self.__class__.__name__ + '(v={})'.format(self.v)
class SSL_Dataset:
"""
SSL_Dataset class gets cifar10 from torchvision.datasets,
separates labeled and unlabeled data,
and returns BasicDataset: torch.utils.data.Dataset
"""
def __init__(self,
name='cifar10',
train=True,
num_classes=10,
data_dir='./data',
args=None):
"""
Args
name: name of dataset in torchvision.datasets = cifar.10
train: True means the dataset is training dataset (default=True)
num_classes: number of label classes
data_dir: path of directory, where data is downloaed or stored.
"""
self.name = name
self.train = train
self.data_dir = data_dir
self.num_classes = num_classes
self.transform_list = construct_transforms(mean[name], std[name], args)
self.transform = get_transform(mean[name], std[name], self.transform_list, train)
def get_data(self):
"""
get_data returns data (images) and targets (labels) from CIFAR-10
"""
dset = getattr(torchvision.datasets, self.name.upper())
dset = dset(self.data_dir, train=self.train, download=True)
data, targets = dset.data, dset.targets
return data, targets
def get_dset(self, use_strong_transform=False,
strong_transform=None, onehot=False):
"""
get_dset returns class BasicDataset, containing the returns of get_data.
Args
use_strong_tranform: If True, returned dataset generates a pair of weak and strong augmented images.
strong_transform: list of strong_transform (augmentation) if use_strong_transform is True
onehot: If True, the label is not integer, but one-hot vector.
"""
data, targets = self.get_data()
num_classes = self.num_classes
transform = self.transform
data_dir = self.data_dir
return BasicDataset(data, targets, num_classes, transform,
use_strong_transform, strong_transform, onehot)
# For test time transformation
def get_dset_clean(self, use_strong_transform=False,
strong_transform=None, onehot=False):
"""
get_dset returns class BasicDataset, containing the returns of get_data.
Args
use_strong_tranform: If True, returned dataset generates a pair of weak and strong augmented images.
strong_transform: list of strong_transform (augmentation) if use_strong_transform is True
onehot: If True, the label is not integer, but one-hot vector.
"""
data, targets = self.get_data()
num_classes = self.num_classes
transform = None
data_dir = self.data_dir
return BasicDataset(data, targets, num_classes, transform,
use_strong_transform, strong_transform, onehot)
def get_ssl_dset(self, num_labels, index=None, include_lb_to_ulb=True,
use_strong_transform=True, strong_transform=None,
onehot=False):
"""
get_ssl_dset split training samples into labeled and unlabeled samples.
The labeled data is balanced samples over classes.
Args:
num_labels: number of labeled data.
index: If index of np.array is given, labeled data is not randomly sampled, but use index for sampling.
include_lb_to_ulb: If True, consistency regularization is also computed for the labeled data.
use_strong_transform: If True, unlabeld dataset returns weak & strong augmented image pair.
If False, unlabeled datasets returns only weak augmented image.
strong_transform: list of strong transform (RandAugment in FixMatch)
oenhot: If True, the target is converted into onehot vector.
Returns:
BasicDataset (for labeled data), BasicDataset (for unlabeld data)
"""
data, targets = self.get_data()
num_classes = self.num_classes
transform = self.transform
data_dir = self.data_dir
lb_data, lb_targets, ulb_data, ulb_targets = split_ssl_data(data, targets,
num_labels, num_classes,
index, include_lb_to_ulb)
lb_dset = BasicDataset(lb_data, lb_targets, num_classes,
transform, False, None, onehot)
ulb_dset = BasicDataset(data, targets, num_classes,
transform, use_strong_transform, strong_transform, onehot)
return lb_dset, ulb_dset
class BasicDataset(Dataset):
"""
BasicDataset returns a pair of image and labels (targets).
If targets are not given, BasicDataset returns None as the label.
This class supports strong augmentation for Fixmatch,
and return both weakly and strongly augmented images.
"""
def __init__(self,
data,
targets=None,
num_classes=None,
transform=None,
use_strong_transform=False,
strong_transform=None,
*args, **kwargs):
"""
Args
data: x_data
targets: y_data (if not exist, None)
num_classes: number of label classes
transform: basic transformation of data
use_strong_transform: If True, this dataset returns both weakly and strongly augmented images.
strong_transform: list of transformation functions for strong augmentation
"""
super(BasicDataset, self).__init__()
self.data = data
self.targets = targets
self.num_classes = num_classes
self.use_strong_transform = use_strong_transform
self.transform = transform
if use_strong_transform:
if strong_transform is None:
self.strong_transform = copy.deepcopy(transform)
self.strong_transform.transforms.insert(0, RandAugment(3, 5))
else:
self.strong_transform = strong_transform
def __getitem__(self, idx):
"""
If strong augmentation is not used,
return weak_augment_image, target
else:
return weak_augment_image, strong_augment_image, target
"""
# set idx-th target
if self.targets is None:
target = None
else:
target_ = self.targets[idx]
target = target_
# set augmented images
img = self.data[idx]
if self.transform is None:
return transforms.ToTensor()(img), target
else:
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
img_w = self.transform(img)
if not self.use_strong_transform:
return img_w, target
else:
return img_w, self.strong_transform(img), target
def __len__(self):
return len(self.data)