-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrn.py
121 lines (107 loc) · 5.08 KB
/
wrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# NOTE: shamelessly stolen from
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, bn_momentum=0.1, leaky_slope=0.0, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes, momentum=bn_momentum)
self.relu1 = nn.LeakyReLU(negative_slope=leaky_slope, inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_planes, momentum=bn_momentum)
self.relu2 = nn.LeakyReLU(negative_slope=leaky_slope, inplace=True)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
self.equalInOut = (in_planes == out_planes)
self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False) or None
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
if self.equalInOut:
out = self.relu2(self.bn2(self.conv1(out)))
else:
out = self.relu2(self.bn2(self.conv1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
if not self.equalInOut:
return torch.add(self.convShortcut(x), out)
else:
return torch.add(x, out)
class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride, bn_momentum=0.1, leaky_slope=0.0, dropRate=0.0):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, bn_momentum, leaky_slope,
dropRate)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, bn_momentum, leaky_slope, dropRate):
layers = []
for i in range(nb_layers):
layers.append(
block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, bn_momentum, leaky_slope,
dropRate))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(self, depth, num_classes, widen_factor=1, bn_momentum=0.1, leaky_slope=0.0, dropRate=0.0):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert ((depth - 4) % 6 == 0)
n = (depth - 4) // 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1,
padding=1, bias=False)
# 1st block
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, bn_momentum, leaky_slope, dropRate)
# 2nd block
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, bn_momentum, leaky_slope, dropRate)
# 3rd block
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, bn_momentum, leaky_slope, dropRate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[3], momentum=bn_momentum)
self.relu = nn.LeakyReLU(negative_slope=leaky_slope, inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def forward(self, x, ood_test=False):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
output = self.fc(out)
if ood_test:
return output, out
else:
return output
class build_WideResNet:
def __init__(self, depth=28, widen_factor=2, bn_momentum=0.01, leaky_slope=0.0, dropRate=0.0):
self.depth = depth
self.widen_factor = widen_factor
self.bn_momentum = bn_momentum
self.dropRate = dropRate
self.leaky_slope = leaky_slope
def build(self, num_classes):
return WideResNet(depth=self.depth,
num_classes=num_classes,
widen_factor=self.widen_factor,
bn_momentum=self.bn_momentum,
leaky_slope=self.leaky_slope,
dropRate=self.dropRate)