-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathinference.py
919 lines (831 loc) · 39.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
import os
import time
import random
import functools
from typing import List, Optional, Tuple, Union
from pathlib import Path
from loguru import logger
import torch
import torch.distributed as dist
from hyvideo.constants import PROMPT_TEMPLATE, NEGATIVE_PROMPT, PRECISION_TO_TYPE, NEGATIVE_PROMPT_I2V
from hyvideo.vae import load_vae
from hyvideo.modules import load_model
from hyvideo.text_encoder import TextEncoder
from hyvideo.utils.data_utils import align_to, get_closest_ratio, generate_crop_size_list
from hyvideo.utils.lora_utils import load_lora_for_pipeline
from hyvideo.modules.posemb_layers import get_nd_rotary_pos_embed
from hyvideo.modules.fp8_optimization import convert_fp8_linear
from hyvideo.diffusion.schedulers import FlowMatchDiscreteScheduler
from hyvideo.diffusion.pipelines import HunyuanVideoPipeline
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
from safetensors.torch import load_file
try:
import xfuser
from xfuser.core.distributed import (
get_sequence_parallel_world_size,
get_sequence_parallel_rank,
get_sp_group,
initialize_model_parallel,
init_distributed_environment
)
except:
xfuser = None
get_sequence_parallel_world_size = None
get_sequence_parallel_rank = None
get_sp_group = None
initialize_model_parallel = None
init_distributed_environment = None
###############################################
# 20250308 pftq: Riflex workaround to fix 192-frame-limit bug, credit to Kijai for finding it in ComfyUI and thu-ml for making it
# https://github.com/thu-ml/RIFLEx/blob/main/riflex_utils.py
from diffusers.models.embeddings import get_1d_rotary_pos_embed
import numpy as np
from typing import Union,Optional
def get_1d_rotary_pos_embed_riflex(
dim: int,
pos: Union[np.ndarray, int],
theta: float = 10000.0,
use_real=False,
k: Optional[int] = None,
L_test: Optional[int] = None,
):
"""
RIFLEx: Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
data type.
Args:
dim (`int`): Dimension of the frequency tensor.
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
theta (`float`, *optional*, defaults to 10000.0):
Scaling factor for frequency computation. Defaults to 10000.0.
use_real (`bool`, *optional*):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
k (`int`, *optional*, defaults to None): the index for the intrinsic frequency in RoPE
L_test (`int`, *optional*, defaults to None): the number of frames for inference
Returns:
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
"""
assert dim % 2 == 0
if isinstance(pos, int):
pos = torch.arange(pos)
if isinstance(pos, np.ndarray):
pos = torch.from_numpy(pos) # type: ignore # [S]
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2, device=pos.device)[: (dim // 2)].float() / dim)
) # [D/2]
# === Riflex modification start ===
# Reduce the intrinsic frequency to stay within a single period after extrapolation (see Eq. (8)).
# Empirical observations show that a few videos may exhibit repetition in the tail frames.
# To be conservative, we multiply by 0.9 to keep the extrapolated length below 90% of a single period.
if k is not None:
freqs[k-1] = 0.9 * 2 * torch.pi / L_test
# === Riflex modification end ===
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
if use_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
else:
# lumina
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
###############################################
def parallelize_transformer(pipe):
transformer = pipe.transformer
original_forward = transformer.forward
@functools.wraps(transformer.__class__.forward)
def new_forward(
self,
x: torch.Tensor,
t: torch.Tensor, # Should be in range(0, 1000).
text_states: torch.Tensor = None,
text_mask: torch.Tensor = None, # Now we don't use it.
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
freqs_cos: Optional[torch.Tensor] = None,
freqs_sin: Optional[torch.Tensor] = None,
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
return_dict: bool = True,
):
if x.shape[-2] // 2 % get_sequence_parallel_world_size() == 0:
# try to split x by height
split_dim = -2
elif x.shape[-1] // 2 % get_sequence_parallel_world_size() == 0:
# try to split x by width
split_dim = -1
else:
raise ValueError(f"Cannot split video sequence into ulysses_degree x ring_degree ({get_sequence_parallel_world_size()}) parts evenly")
# patch sizes for the temporal, height, and width dimensions are 1, 2, and 2.
temporal_size, h, w = x.shape[2], x.shape[3] // 2, x.shape[4] // 2
x = torch.chunk(x, get_sequence_parallel_world_size(),dim=split_dim)[get_sequence_parallel_rank()]
dim_thw = freqs_cos.shape[-1]
freqs_cos = freqs_cos.reshape(temporal_size, h, w, dim_thw)
freqs_cos = torch.chunk(freqs_cos, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
freqs_cos = freqs_cos.reshape(-1, dim_thw)
dim_thw = freqs_sin.shape[-1]
freqs_sin = freqs_sin.reshape(temporal_size, h, w, dim_thw)
freqs_sin = torch.chunk(freqs_sin, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
freqs_sin = freqs_sin.reshape(-1, dim_thw)
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
for block in transformer.double_blocks + transformer.single_blocks:
block.hybrid_seq_parallel_attn = xFuserLongContextAttention()
output = original_forward(
x,
t,
text_states,
text_mask,
text_states_2,
freqs_cos,
freqs_sin,
guidance,
return_dict,
)
return_dict = not isinstance(output, tuple)
sample = output["x"]
sample = get_sp_group().all_gather(sample, dim=split_dim)
output["x"] = sample
return output
new_forward = new_forward.__get__(transformer)
transformer.forward = new_forward
class Inference(object):
def __init__(
self,
args,
vae,
vae_kwargs,
text_encoder,
model,
text_encoder_2=None,
pipeline=None,
use_cpu_offload=False,
device=None,
logger=None,
parallel_args=None,
):
self.vae = vae
self.vae_kwargs = vae_kwargs
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
self.model = model
self.pipeline = pipeline
self.use_cpu_offload = use_cpu_offload
self.args = args
self.device = (
device
if device is not None
else "cuda"
if torch.cuda.is_available()
else "cpu"
)
self.logger = logger
self.parallel_args = parallel_args
# 20250316 pftq: Fixed multi-GPU loading times going up to 20 min due to loading contention by loading models only to one GPU and braodcasting to the rest.
@classmethod
def from_pretrained(cls, pretrained_model_path, args, device=None, **kwargs):
"""
Initialize the Inference pipeline.
Args:
pretrained_model_path (str or pathlib.Path): The model path, including t2v, text encoder and vae checkpoints.
args (argparse.Namespace): The arguments for the pipeline.
device (int): The device for inference. Default is None.
"""
logger.info(f"Got text-to-video model root path: {pretrained_model_path}")
# ========================================================================
# Initialize Distributed Environment
# ========================================================================
# 20250316 pftq: Modified to extract rank and world_size early for sequential loading
if args.ulysses_degree > 1 or args.ring_degree > 1:
assert xfuser is not None, "Ulysses Attention and Ring Attention requires xfuser package."
assert args.use_cpu_offload is False, "Cannot enable use_cpu_offload in the distributed environment."
# 20250316 pftq: Set local rank and device explicitly for NCCL
local_rank = int(os.environ['LOCAL_RANK'])
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(local_rank) # 20250316 pftq: Set CUDA device explicitly
dist.init_process_group("nccl") # 20250316 pftq: Removed device_id, rely on set_device
rank = dist.get_rank()
world_size = dist.get_world_size()
assert world_size == args.ring_degree * args.ulysses_degree, \
"number of GPUs should be equal to ring_degree * ulysses_degree."
init_distributed_environment(rank=rank, world_size=world_size)
initialize_model_parallel(
sequence_parallel_degree=world_size,
ring_degree=args.ring_degree,
ulysses_degree=args.ulysses_degree,
)
else:
rank = 0 # 20250316 pftq: Default rank for single GPU
world_size = 1 # 20250316 pftq: Default world_size for single GPU
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
parallel_args = {"ulysses_degree": args.ulysses_degree, "ring_degree": args.ring_degree}
torch.set_grad_enabled(False)
# ========================================================================
# Build main model, VAE, and text encoder sequentially on rank 0
# ========================================================================
# 20250316 pftq: Load models only on rank 0, then broadcast
if rank == 0:
logger.info("Building model...")
factor_kwargs = {"device": device, "dtype": PRECISION_TO_TYPE[args.precision]}
if args.i2v_mode and args.i2v_condition_type == "latent_concat":
in_channels = args.latent_channels * 2 + 1
image_embed_interleave = 2
elif args.i2v_mode and args.i2v_condition_type == "token_replace":
in_channels = args.latent_channels
image_embed_interleave = 4
else:
in_channels = args.latent_channels
image_embed_interleave = 1
out_channels = args.latent_channels
if args.embedded_cfg_scale:
factor_kwargs["guidance_embed"] = True
model = load_model(
args,
in_channels=in_channels,
out_channels=out_channels,
factor_kwargs=factor_kwargs,
)
if args.use_fp8:
convert_fp8_linear(model, args.dit_weight, original_dtype=PRECISION_TO_TYPE[args.precision])
model = model.to(device)
model = Inference.load_state_dict(args, model, pretrained_model_path)
model.eval()
# VAE
vae, _, s_ratio, t_ratio = load_vae(
args.vae,
args.vae_precision,
logger=logger,
device=device if not args.use_cpu_offload else "cpu",
)
vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
# Text encoder
if args.i2v_mode:
args.text_encoder = "llm-i2v"
args.tokenizer = "llm-i2v"
args.prompt_template = "dit-llm-encode-i2v"
args.prompt_template_video = "dit-llm-encode-video-i2v"
if args.prompt_template_video is not None:
crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get("crop_start", 0)
elif args.prompt_template is not None:
crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0)
else:
crop_start = 0
max_length = args.text_len + crop_start
prompt_template = PROMPT_TEMPLATE[args.prompt_template] if args.prompt_template is not None else None
prompt_template_video = PROMPT_TEMPLATE[args.prompt_template_video] if args.prompt_template_video is not None else None
text_encoder = TextEncoder(
text_encoder_type=args.text_encoder,
max_length=max_length,
text_encoder_precision=args.text_encoder_precision,
tokenizer_type=args.tokenizer,
i2v_mode=args.i2v_mode,
prompt_template=prompt_template,
prompt_template_video=prompt_template_video,
hidden_state_skip_layer=args.hidden_state_skip_layer,
apply_final_norm=args.apply_final_norm,
reproduce=args.reproduce,
logger=logger,
device=device if not args.use_cpu_offload else "cpu",
image_embed_interleave=image_embed_interleave
)
text_encoder_2 = None
if args.text_encoder_2 is not None:
text_encoder_2 = TextEncoder(
text_encoder_type=args.text_encoder_2,
max_length=args.text_len_2,
text_encoder_precision=args.text_encoder_precision_2,
tokenizer_type=args.tokenizer_2,
reproduce=args.reproduce,
logger=logger,
device=device if not args.use_cpu_offload else "cpu",
)
else:
# 20250316 pftq: Initialize as None on non-zero ranks
model = None
vae = None
vae_kwargs = None
text_encoder = None
text_encoder_2 = None
# 20250316 pftq: Broadcast models to all ranks
if world_size > 1:
logger.info(f"Rank {rank}: Starting broadcast synchronization")
dist.barrier() # Ensure rank 0 finishes loading before broadcasting
if rank != 0:
# Reconstruct model skeleton on non-zero ranks
factor_kwargs = {"device": device, "dtype": PRECISION_TO_TYPE[args.precision]}
if args.i2v_mode and args.i2v_condition_type == "latent_concat":
in_channels = args.latent_channels * 2 + 1
image_embed_interleave = 2
elif args.i2v_mode and args.i2v_condition_type == "token_replace":
in_channels = args.latent_channels
image_embed_interleave = 4
else:
in_channels = args.latent_channels
image_embed_interleave = 1
out_channels = args.latent_channels
if args.embedded_cfg_scale:
factor_kwargs["guidance_embed"] = True
model = load_model(args, in_channels=in_channels, out_channels=out_channels, factor_kwargs=factor_kwargs).to(device)
vae, _, s_ratio, t_ratio = load_vae(args.vae, args.vae_precision, logger=logger, device=device if not args.use_cpu_offload else "cpu")
vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
vae = vae.to(device)
if args.i2v_mode:
args.text_encoder = "llm-i2v"
args.tokenizer = "llm-i2v"
args.prompt_template = "dit-llm-encode-i2v"
args.prompt_template_video = "dit-llm-encode-video-i2v"
if args.prompt_template_video is not None:
crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get("crop_start", 0)
elif args.prompt_template is not None:
crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0)
else:
crop_start = 0
max_length = args.text_len + crop_start
prompt_template = PROMPT_TEMPLATE[args.prompt_template] if args.prompt_template is not None else None
prompt_template_video = PROMPT_TEMPLATE[args.prompt_template_video] if args.prompt_template_video is not None else None
text_encoder = TextEncoder(
text_encoder_type=args.text_encoder,
max_length=max_length,
text_encoder_precision=args.text_encoder_precision,
tokenizer_type=args.tokenizer,
i2v_mode=args.i2v_mode,
prompt_template=prompt_template,
prompt_template_video=prompt_template_video,
hidden_state_skip_layer=args.hidden_state_skip_layer,
apply_final_norm=args.apply_final_norm,
reproduce=args.reproduce,
logger=logger,
device=device if not args.use_cpu_offload else "cpu",
image_embed_interleave=image_embed_interleave
).to(device)
text_encoder_2 = None
if args.text_encoder_2 is not None:
text_encoder_2 = TextEncoder(
text_encoder_type=args.text_encoder_2,
max_length=args.text_len_2,
text_encoder_precision=args.text_encoder_precision_2,
tokenizer_type=args.tokenizer_2,
reproduce=args.reproduce,
logger=logger,
device=device if not args.use_cpu_offload else "cpu",
).to(device)
# Broadcast model parameters with logging
logger.info(f"Rank {rank}: Broadcasting model parameters")
for param in model.parameters():
dist.broadcast(param.data, src=0)
model.eval()
logger.info(f"Rank {rank}: Broadcasting VAE parameters")
for param in vae.parameters():
dist.broadcast(param.data, src=0)
# 20250316 pftq: Use broadcast_object_list for vae_kwargs
logger.info(f"Rank {rank}: Broadcasting vae_kwargs")
vae_kwargs_list = [vae_kwargs] if rank == 0 else [None]
dist.broadcast_object_list(vae_kwargs_list, src=0)
vae_kwargs = vae_kwargs_list[0]
logger.info(f"Rank {rank}: Broadcasting text_encoder parameters")
for param in text_encoder.parameters():
dist.broadcast(param.data, src=0)
if text_encoder_2 is not None:
logger.info(f"Rank {rank}: Broadcasting text_encoder_2 parameters")
for param in text_encoder_2.parameters():
dist.broadcast(param.data, src=0)
return cls(
args=args,
vae=vae,
vae_kwargs=vae_kwargs,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
model=model,
use_cpu_offload=args.use_cpu_offload,
device=device,
logger=logger,
parallel_args=parallel_args
)
@staticmethod
def load_state_dict(args, model, pretrained_model_path):
load_key = args.load_key
if args.i2v_mode:
dit_weight = Path(args.i2v_dit_weight)
else:
dit_weight = Path(args.dit_weight)
if dit_weight is None:
model_dir = pretrained_model_path / f"t2v_{args.model_resolution}"
files = list(model_dir.glob("*.pt"))
if len(files) == 0:
raise ValueError(f"No model weights found in {model_dir}")
if str(files[0]).startswith("pytorch_model_"):
model_path = dit_weight / f"pytorch_model_{load_key}.pt"
bare_model = True
elif any(str(f).endswith("_model_states.pt") for f in files):
files = [f for f in files if str(f).endswith("_model_states.pt")]
model_path = files[0]
if len(files) > 1:
logger.warning(f"Multiple model weights found in {dit_weight}, using {model_path}")
bare_model = False
else:
raise ValueError(f"Invalid model path: {dit_weight} with unrecognized weight format")
else:
if dit_weight.is_dir():
files = list(dit_weight.glob("*.pt"))
if len(files) == 0:
raise ValueError(f"No model weights found in {dit_weight}")
if str(files[0]).startswith("pytorch_model_"):
model_path = dit_weight / f"pytorch_model_{load_key}.pt"
bare_model = True
elif any(str(f).endswith("_model_states.pt") for f in files):
files = [f for f in files if str(f).endswith("_model_states.pt")]
model_path = files[0]
if len(files) > 1:
logger.warning(f"Multiple model weights found in {dit_weight}, using {model_path}")
bare_model = False
else:
raise ValueError(f"Invalid model path: {dit_weight} with unrecognized weight format")
elif dit_weight.is_file():
model_path = dit_weight
bare_model = "unknown"
else:
raise ValueError(f"Invalid model path: {dit_weight}")
if not model_path.exists():
raise ValueError(f"model_path not exists: {model_path}")
logger.info(f"Loading torch model {model_path}...")
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
if bare_model == "unknown" and ("ema" in state_dict or "module" in state_dict):
bare_model = False
if bare_model is False:
if load_key in state_dict:
state_dict = state_dict[load_key]
else:
raise KeyError(f"Missing key: `{load_key}` in the checkpoint: {model_path}")
model.load_state_dict(state_dict, strict=True)
return model
@staticmethod
def parse_size(size):
if isinstance(size, int):
size = [size]
if not isinstance(size, (list, tuple)):
raise ValueError(f"Size must be an integer or (height, width), got {size}.")
if len(size) == 1:
size = [size[0], size[0]]
if len(size) != 2:
raise ValueError(f"Size must be an integer or (height, width), got {size}.")
return size
class HunyuanVideoSampler(Inference):
def __init__(
self,
args,
vae,
vae_kwargs,
text_encoder,
model,
text_encoder_2=None,
pipeline=None,
use_cpu_offload=False,
device=0,
logger=None,
parallel_args=None
):
super().__init__(
args,
vae,
vae_kwargs,
text_encoder,
model,
text_encoder_2=text_encoder_2,
pipeline=pipeline,
use_cpu_offload=use_cpu_offload,
device=device,
logger=logger,
parallel_args=parallel_args
)
self.pipeline = self.load_diffusion_pipeline(
args=args,
vae=self.vae,
text_encoder=self.text_encoder,
text_encoder_2=self.text_encoder_2,
model=self.model,
device=self.device,
)
if args.i2v_mode:
self.default_negative_prompt = NEGATIVE_PROMPT_I2V
if args.use_lora:
self.pipeline = load_lora_for_pipeline(
self.pipeline, args.lora_path, LORA_PREFIX_TRANSFORMER="Hunyuan_video_I2V_lora", alpha=args.lora_scale,
device=self.device,
is_parallel=(self.parallel_args['ulysses_degree'] > 1 or self.parallel_args['ring_degree'] > 1))
logger.info(f"load lora {args.lora_path} into pipeline, lora scale is {args.lora_scale}.")
else:
self.default_negative_prompt = NEGATIVE_PROMPT
if self.parallel_args['ulysses_degree'] > 1 or self.parallel_args['ring_degree'] > 1:
parallelize_transformer(self.pipeline)
def load_diffusion_pipeline(
self,
args,
vae,
text_encoder,
text_encoder_2,
model,
scheduler=None,
device=None,
progress_bar_config=None,
):
if scheduler is None:
if args.denoise_type == "flow":
scheduler = FlowMatchDiscreteScheduler(
shift=args.flow_shift,
reverse=args.flow_reverse,
solver=args.flow_solver,
)
else:
raise ValueError(f"Invalid denoise type {args.denoise_type}")
pipeline = HunyuanVideoPipeline(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
transformer=model,
scheduler=scheduler,
progress_bar_config=progress_bar_config,
args=args,
)
if self.use_cpu_offload:
pipeline.enable_sequential_cpu_offload()
else:
pipeline = pipeline.to(device)
return pipeline
# 20250317 pftq: Modified to use Riflex when >192 frames
def get_rotary_pos_embed(self, video_length, height, width):
target_ndim = 3
ndim = 5 - 2 # B, C, F, H, W -> F, H, W
# Compute latent sizes based on VAE type
if "884" in self.args.vae:
latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
elif "888" in self.args.vae:
latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
else:
latents_size = [video_length, height // 8, width // 8]
# Compute rope sizes
if isinstance(self.model.patch_size, int):
assert all(s % self.model.patch_size == 0 for s in latents_size), (
f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
f"but got {latents_size}."
)
rope_sizes = [s // self.model.patch_size for s in latents_size]
elif isinstance(self.model.patch_size, list):
assert all(
s % self.model.patch_size[idx] == 0
for idx, s in enumerate(latents_size)
), (
f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
f"but got {latents_size}."
)
rope_sizes = [s // self.model.patch_size[idx] for idx, s in enumerate(latents_size)]
if len(rope_sizes) != target_ndim:
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # Pad time axis
# 20250316 pftq: Add RIFLEx logic for > 192 frames
L_test = rope_sizes[0] # Latent frames
L_train = 25 # Training length from HunyuanVideo
actual_num_frames = video_length # Use input video_length directly
head_dim = self.model.hidden_size // self.model.heads_num
rope_dim_list = self.model.rope_dim_list or [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) must equal head_dim"
if actual_num_frames > 192:
k = 2+((actual_num_frames + 3) // (4 * L_train))
k = max(4, min(8, k))
logger.debug(f"actual_num_frames = {actual_num_frames} > 192, RIFLEx applied with k = {k}")
# Compute positional grids for RIFLEx
axes_grids = [torch.arange(size, device=self.device, dtype=torch.float32) for size in rope_sizes]
grid = torch.meshgrid(*axes_grids, indexing="ij")
grid = torch.stack(grid, dim=0) # [3, t, h, w]
pos = grid.reshape(3, -1).t() # [t * h * w, 3]
# Apply RIFLEx to temporal dimension
freqs = []
for i in range(3):
if i == 0: # Temporal with RIFLEx
freqs_cos, freqs_sin = get_1d_rotary_pos_embed_riflex(
rope_dim_list[i],
pos[:, i],
theta=self.args.rope_theta,
use_real=True,
k=k,
L_test=L_test
)
else: # Spatial with default RoPE
freqs_cos, freqs_sin = get_1d_rotary_pos_embed_riflex(
rope_dim_list[i],
pos[:, i],
theta=self.args.rope_theta,
use_real=True,
k=None,
L_test=None
)
freqs.append((freqs_cos, freqs_sin))
logger.debug(f"freq[{i}] shape: {freqs_cos.shape}, device: {freqs_cos.device}")
freqs_cos = torch.cat([f[0] for f in freqs], dim=1)
freqs_sin = torch.cat([f[1] for f in freqs], dim=1)
logger.debug(f"freqs_cos shape: {freqs_cos.shape}, device: {freqs_cos.device}")
else:
# 20250316 pftq: Original code for <= 192 frames
logger.debug(f"actual_num_frames = {actual_num_frames} <= 192, using original RoPE")
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list,
rope_sizes,
theta=self.args.rope_theta,
use_real=True,
theta_rescale_factor=1,
)
logger.debug(f"freqs_cos shape: {freqs_cos.shape}, device: {freqs_cos.device}")
return freqs_cos, freqs_sin
@torch.no_grad()
def predict(
self,
prompt,
height=192,
width=336,
video_length=129,
seed=None,
negative_prompt=None,
infer_steps=50,
guidance_scale=6.0,
flow_shift=5.0,
embedded_guidance_scale=None,
batch_size=1,
num_videos_per_prompt=1,
i2v_mode=False,
i2v_resolution="720p",
i2v_image_path=None,
i2v_condition_type=None,
i2v_stability=True,
ulysses_degree=1,
ring_degree=1,
**kwargs,
):
out_dict = dict()
if isinstance(seed, torch.Tensor):
seed = seed.tolist()
if seed is None:
seeds = [
random.randint(0, 1_000_000)
for _ in range(batch_size * num_videos_per_prompt)
]
elif isinstance(seed, int):
seeds = [
seed + i
for _ in range(batch_size)
for i in range(num_videos_per_prompt)
]
elif isinstance(seed, (list, tuple)):
if len(seed) == batch_size:
seeds = [
int(seed[i]) + j
for i in range(batch_size)
for j in range(num_videos_per_prompt)
]
elif len(seed) == batch_size * num_videos_per_prompt:
seeds = [int(s) for s in seed]
else:
raise ValueError(
f"Length of seed must be equal to number of prompt(batch_size) or "
f"batch_size * num_videos_per_prompt ({batch_size} * {num_videos_per_prompt}), got {seed}."
)
else:
raise ValueError(
f"Seed must be an integer, a list of integers, or None, got {seed}."
)
generator = [torch.Generator(self.device).manual_seed(seed) for seed in seeds]
out_dict["seeds"] = seeds
if width <= 0 or height <= 0 or video_length <= 0:
raise ValueError(
f"`height` and `width` and `video_length` must be positive integers, got height={height}, width={width}, video_length={video_length}"
)
if (video_length - 1) % 4 != 0:
raise ValueError(
f"`video_length-1` must be a multiple of 4, got {video_length}"
)
logger.info(
f"Input (height, width, video_length) = ({height}, {width}, {video_length})"
)
target_height = align_to(height, 16)
target_width = align_to(width, 16)
target_video_length = video_length
out_dict["size"] = (target_height, target_width, target_video_length)
if not isinstance(prompt, str):
raise TypeError(f"`prompt` must be a string, but got {type(prompt)}")
prompt = [prompt.strip()]
if negative_prompt is None or negative_prompt == "":
negative_prompt = self.default_negative_prompt
if guidance_scale == 1.0:
negative_prompt = ""
if not isinstance(negative_prompt, str):
raise TypeError(
f"`negative_prompt` must be a string, but got {type(negative_prompt)}"
)
negative_prompt = [negative_prompt.strip()]
scheduler = FlowMatchDiscreteScheduler(
shift=flow_shift,
reverse=self.args.flow_reverse,
solver=self.args.flow_solver
)
self.pipeline.scheduler = scheduler
img_latents = None
semantic_images = None
if i2v_mode:
if i2v_resolution == "720p":
bucket_hw_base_size = 960
elif i2v_resolution == "540p":
bucket_hw_base_size = 720
elif i2v_resolution == "360p":
bucket_hw_base_size = 480
else:
raise ValueError(f"i2v_resolution: {i2v_resolution} must be in [360p, 540p, 720p]")
semantic_images = [Image.open(i2v_image_path).convert('RGB')]
origin_size = semantic_images[0].size
crop_size_list = generate_crop_size_list(bucket_hw_base_size, 32)
aspect_ratios = np.array([round(float(h)/float(w), 5) for h, w in crop_size_list])
closest_size, closest_ratio = get_closest_ratio(origin_size[1], origin_size[0], aspect_ratios, crop_size_list)
if ulysses_degree != 1 or ring_degree != 1:
diviser = get_sequence_parallel_world_size() * 8 * 2
if closest_size[0] % diviser != 0 and closest_size[1] % diviser != 0:
xdit_crop_size_list = list(filter(lambda x: x[0] % diviser == 0 or x[1] % diviser == 0, crop_size_list))
xdit_aspect_ratios = np.array([round(float(h)/float(w), 5) for h, w in xdit_crop_size_list])
xdit_closest_size, closest_ratio = get_closest_ratio(origin_size[1], origin_size[0], xdit_aspect_ratios, xdit_crop_size_list)
assert os.getenv("ALLOW_RESIZE_FOR_SP") is not None, \
f"The image resolution is {origin_size}. " \
f"Based on the input i2v-resultion ({i2v_resolution}), " \
f"the closest ratio of resolution supported by HunyuanVideo-I2V is ({closest_size[1]}, {closest_size[0]}), " \
f"the latent resolution of which is ({closest_size[1] // 16}, {closest_size[0] // 16}). " \
f"You run the program with {get_sequence_parallel_world_size()} GPUs " \
f"(SP degree={get_sequence_parallel_world_size()}). " \
f"However, neither of the width ({closest_size[1] // 16}) or the " \
f"height ({closest_size[0] // 16}) " \
f"is divisible by the SP degree ({get_sequence_parallel_world_size()}). " \
f"Please set ALLOW_RESIZE_FOR_SP=1 in the environment to allow xDiT to resize the image to {xdit_closest_size}. " \
f"If you do not want to resize the image, please try other SP degrees and rerun the program. "
logger.debug(f"xDiT resizes the input image to {xdit_closest_size}.")
closest_size = xdit_closest_size
resize_param = min(closest_size)
center_crop_param = closest_size
ref_image_transform = transforms.Compose([
transforms.Resize(resize_param),
transforms.CenterCrop(center_crop_param),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
semantic_image_pixel_values = [ref_image_transform(semantic_image) for semantic_image in semantic_images]
semantic_image_pixel_values = torch.cat(semantic_image_pixel_values).unsqueeze(0).unsqueeze(2).to(self.device)
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=True):
img_latents = self.pipeline.vae.encode(semantic_image_pixel_values).latent_dist.mode()
img_latents.mul_(self.pipeline.vae.config.scaling_factor)
target_height, target_width = closest_size
freqs_cos, freqs_sin = self.get_rotary_pos_embed(
target_video_length, target_height, target_width
)
n_tokens = freqs_cos.shape[0]
debug_str = f"""
height: {target_height}
width: {target_width}
video_length: {target_video_length}
prompt: {prompt}
neg_prompt: {negative_prompt}
seed: {seed}
infer_steps: {infer_steps}
num_videos_per_prompt: {num_videos_per_prompt}
guidance_scale: {guidance_scale}
n_tokens: {n_tokens}
flow_shift: {flow_shift}
embedded_guidance_scale: {embedded_guidance_scale}
i2v_stability: {i2v_stability}"""
if ulysses_degree != 1 or ring_degree != 1:
debug_str += f"""
ulysses_degree: {ulysses_degree}
ring_degree: {ring_degree}"""
logger.debug(debug_str)
start_time = time.time()
samples = self.pipeline(
prompt=prompt,
height=target_height,
width=target_width,
video_length=target_video_length,
num_inference_steps=infer_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
generator=generator,
output_type="pil",
freqs_cis=(freqs_cos, freqs_sin),
n_tokens=n_tokens,
embedded_guidance_scale=embedded_guidance_scale,
data_type="video" if target_video_length > 1 else "image",
is_progress_bar=True,
vae_ver=self.args.vae,
enable_tiling=self.args.vae_tiling,
i2v_mode=i2v_mode,
i2v_condition_type=i2v_condition_type,
i2v_stability=i2v_stability,
img_latents=img_latents,
semantic_images=semantic_images,
)[0]
out_dict["samples"] = samples
out_dict["prompts"] = prompt
gen_time = time.time() - start_time
logger.info(f"Success, time: {gen_time}")
return out_dict