-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
354 lines (295 loc) · 14.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, SequentialSampler
import numpy as np
import math
import torch
import torch.nn as nn
import random
from torch.multiprocessing import cpu_count
from torch.optim import Adam
import pytorch_lightning as pl
from argparse import Namespace
import argparse
import random
import pickle
# from pytorch_lightning.loggers import WandbLogger
from conclu import *
from ios import read_data_new, read_coverage, read_fragment, combine_reps
import warnings
warnings.filterwarnings("ignore", ".*does not have many workers.*")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# In[12]:
def align_loss(x, y, alpha=2):
return (x - y).norm(p=2, dim=1).pow(alpha)
def uniform_loss(x, t=2):
return torch.pdist(x, p=2).pow(2).mul(-t).exp().mean().log()
class ContrastLearn(pl.LightningModule):
def __init__(self, hparams):
hparams = Namespace(**hparams) if isinstance(hparams, dict) else hparams
super().__init__()
self.save_hyperparameters(hparams)
# emb = ResNetEmbedding(self.hparams.input_size, self.hparams.emb_size)
# emb = RegionEmbedding(self.hparams.hidden_size, self.hparams.emb_size,
# self.hparams.first_kernel_size, self.hparams.dropout_rate,
# self.hparams.input_dim)
# emb = googlenet(self.hparams.hidden_size, self.hparams.emb_size, self.hparams.dropout_rate,
# self.hparams.input_dim)
if self.hparams.modelname == 'ResAE':
self.model = ResAE(out_channels=self.hparams.hidden_size, embedding_size=self.hparams.emb_size,
cluster_num=self.hparams.class_num,
kernel_size=self.hparams.first_kernel_size,
input_size = self.hparams.input_size)
if self.hparams.modelname == 'CNNAE':
emb = DeepAutoencoder(self.hparams.hidden_size, self.hparams.emb_size,
self.hparams.first_kernel_size, self.hparams.input_size)
self.model = Network2(emb, self.hparams.fea_dim, self.hparams.class_num)
self.ins_loss = InstanceLoss(self.hparams.ins_temp, self.hparams.n_views)
self.clu_loss = ClusterLoss(self.hparams.class_num, self.hparams.clu_temp,
self.hparams.n_views)
self.AEloss = nn.MSELoss()
def total_steps(self):
return len(self.train_dataloader()) // self.hparams.epochs
def train_dataloader(self):
return DataLoader(rep_data,
batch_size=self.hparams.batch_size,
sampler=SubsetRandomSampler(list(range(self.hparams.train_size))))
def val_dataloader(self):
return DataLoader(rep_data,
batch_size=self.hparams.batch_size,
shuffle=False,
sampler=SequentialSampler(list(range(self.hparams.train_size + 1,
self.hparams.train_size + self.hparams.validation_size))))
def forward(self, X):
return self.model(X)
def step(self, batch, step_name = "train"):
all_emb = []
all_clu = []
X, Y = batch
loss = 0
if self.hparams.smooth:
X = preprocess(X)
## split to single replicate
embX, cluX, decodedX = self.forward(X)
all_emb.append(embX)
all_clu.append(cluX)
loss += self.hparams.beta * self.AEloss(X, decodedX)
#print("shape of input: ", embX.size())
## compute uniform and align
uni = 0
aln = 0
uni += torch.sum(uniform_loss(normalize(embX.squeeze(1))))
for i in range(self.hparams.n_rep - 1):
if self.hparams.n_rep == 2:
rep = Y
elif len(Y.size()) == 4: ## with segments (multiple features)
rep = Y[:, i, :, :].squeeze(1)
else: ## only coverage
rep = Y[:, i, :].unsqueeze(1)
if self.hparams.smooth:
rep = preprocess(rep)
# flip the tensor to make augmentation
# X_flipped = torch.flip(X, [1, 2])
# Y_flipped = torch.flip(rep, [1, 2])
embY, cluY, decodedY = self.forward(rep)
loss += self.hparams.beta * self.AEloss(rep, decodedY)
all_emb.append(embY)
all_clu.append(cluY)
# uni += torch.sum(uniform_loss(normalize(embY.squeeze(1))))
loss /= self.hparams.n_rep
orders = [(a, b) for idx, a in enumerate(range(self.hparams.n_rep)) for b in range(self.hparams.n_rep)[idx + 1:]]
for ords in orders:
# embXf, _ = self.forward(X_flipped)
# embYf, _ = self.forward(Y_flipped)
#aln += torch.sum(align_loss(normalize(all_emb[ords[1]].squeeze(1)), normalize(all_emb[ords[0]].squeeze(1))))
#print(normalize(all_emb[ords[1]].squeeze(1)))
#print(normalize(all_emb[ords[0]].squeeze(1)))
loss_instance = self.ins_loss(all_emb[ords[0]], all_emb[ords[1]])
loss_cluster = self.clu_loss(all_clu[ords[0]], all_clu[ords[1]])
# loss_aug1 = self.ins_loss(embX, embXf)
# loss_aug2 = self.ins_loss(embY, embYf)
# loss += loss_instance + loss_cluster + loss_aug1 + loss_aug2
loss += loss_instance + loss_cluster
#aln /= len(orders)
loss /= len(orders)
loss_key = f"{step_name}_loss"
tensorboard_logs = {loss_key: loss}
#self.log('align', aln/self.hparams.train_size, on_epoch=True, prog_bar=True)
#self.log('uni', uni/self.hparams.train_size, on_epoch=True, prog_bar=True)
return { ("loss" if step_name == "train" else loss_key): loss, 'log': tensorboard_logs,
"progress_bar": {loss_key: loss}}
def training_step(self, batch, batch_idx):
return self.step(batch, "train")
def validation_step(self, batch, batch_idx):
return self.step(batch, "val")
def validation_end(self, outputs):
if len(outputs) == 0:
return {"val_loss": torch.tensor(0)}
else:
loss = torch.stack([x["val_loss"] for x in outputs]).mean()
return {"val_loss": loss, "log": {"val_loss": loss}}
def configure_optimizers(self):
optimizer = Adam(self.model.parameters(), lr=self.hparams.lr)
return [optimizer], []
class ContrastLearn_lab(pl.LightningModule):
def __init__(self, hparams):
hparams = Namespace(**hparams) if isinstance(hparams, dict) else hparams
super().__init__()
self.save_hyperparameters(hparams)
emb = RegionEmbedding(self.hparams.hidden_size, self.hparams.emb_size,
self.hparams.first_kernel_size, self.hparams.dropout_rate,
self.hparams.input_dim)
self.model = Network(emb, self.hparams.fea_dim, self.hparams.class_num)
# self.model = ImageEmbedding()
self.ins_loss = InstanceLoss(self.hparams.ins_temp, self.hparams.n_views)
self.clu_loss = nn.CrossEntropyLoss(weight = self.hparams.class_weights)
def total_steps(self):
return len(self.train_dataloader()) // self.hparams.epochs
def train_dataloader(self):
return DataLoader(rep_data,
batch_size=self.hparams.batch_size,
sampler=SubsetRandomSampler(list(range(self.hparams.train_size))))
def val_dataloader(self):
return DataLoader(rep_data,
batch_size=self.hparams.batch_size,
shuffle=False,
sampler=SequentialSampler(list(range(self.hparams.train_size + 1,
self.hparams.train_size + self.hparams.validation_size))))
def forward(self, X):
return self.model(X)
def step(self, batch, step_name = "train"):
X, Y = batch
Y.unsqueeze(1);
loss = 0
rep = X[:, 0, :].unsqueeze(1)
embX, cluX = self.forward(rep)
loss_cluster = self.clu_loss(cluX.squeeze(1), Y[:, 0])
loss = loss_cluster
## split to single replicate
for i in range(self.hparams.n_rep-1):
rep = X[:, i+1, :].unsqueeze(1)
embY, cluY = self.forward(rep)
loss_instance = self.ins_loss(embX, embY)
loss_cluster += self.clu_loss(cluY.squeeze(1), Y[:, i+1])
loss += loss_instance + loss_cluster
loss_key = f"{step_name}_loss"
tensorboard_logs = {loss_key: loss}
return { ("loss" if step_name == "train" else loss_key): loss, 'log': tensorboard_logs,
"progress_bar": {loss_key: loss}}
def training_step(self, batch, batch_idx):
return self.step(batch, "train")
def validation_step(self, batch, batch_idx):
return self.step(batch, "val")
def validation_end(self, outputs):
if len(outputs) == 0:
return {"val_loss": torch.tensor(0)}
else:
loss = torch.stack([x["val_loss"] for x in outputs]).mean()
return {"val_loss": loss, "log": {"val_loss": loss}}
def configure_optimizers(self):
optimizer = Adam(self.model.parameters(), lr=self.hparams.lr)
return [optimizer], []
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='train', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--datapath', type=str)
parser.add_argument('--n_rep', type=int)
parser.add_argument('--fragpath', default=[], nargs='*')
parser.add_argument('--modelpath', default='model.ckpt', type=str)
parser.add_argument('--labpath', default='null', type=str)
parser.add_argument('--model', default='ResAE', type=str) ## model name, can be ResAE, Resnet and CNNAE
parser.add_argument('--epochs', default=25, type=int)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--emb_size', default=50, type=int) ## notice the dim after cov is 80
parser.add_argument('--fea_dim', default=25, type=int)
parser.add_argument('--first_kernel_size', default=31, type=int)
parser.add_argument("--dropout_rate", default=0.05, type=float)
parser.add_argument("--temperature", default=0.5, type=float)
parser.add_argument("--hidden_size", default=5, type=int) ## num of hidden channels
parser.add_argument("--gpus", default=1, type=int)
parser.add_argument("--smooth", default=0, type=int)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--n_class", default=2, type=int)
parser.add_argument("--sample", default='null', type=str)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
random.seed(args.seed)
print("Reading coverage files")
n_rep = args.n_rep
datapath = [args.datapath + '/rep' + str(x) + '.txt' for x in list(range(1, int(n_rep) + 1))]
d = []
for file in datapath:
if args.debug:
print("Reading RCL input file " + file + ".")
cov = read_data_new(file)
d.append(cov)
# test set
if args.sample != 'null':
selected = np.random.choice(d[0].shape[0], int(d[0].shape[0] * 0.85), replace = False)
pickle.dump(selected, open(str(args.sample) + ".p", "wb"))
d = np.array(d)
d = d[:, selected, :]
d = list(d)
n_dat = len(d[0])
n_train = math.ceil(n_dat * 0.8)
n_val = n_dat - n_train
input_size = len(d[0][0])
if args.model == 'ResAE':
input_size = (1, input_size)
input_dim = 1
if len(args.fragpath) > 0:
input_dim = 2
print("Reading fragment length files\n")
for i, f in enumerate(args.fragpath):
fra = read_fragment(f, [1, 2, 3, 4, 6])
d[i] = np.dstack((fra, d[i]))
w_pos = 0
w_neg = 0
if args.labpath != 'null':
lab = pickle.load(open(args.labpath, "rb"))
posn = 0
negn = 0
for l in lab:
negn += l.count(0)
posn += l.count(1)
w_pos = (posn + negn) / (2 * posn)
w_neg = (posn + negn) / (2 * negn)
rep_data = combine_rep_lab(d, lab, device=device)
else:
rep_data = combine_reps(d, device=device)
class_weights = torch.FloatTensor([w_neg, w_pos]).to(device)
print("weight ", class_weights)
print("Finished reading\n")
hparams = Namespace(lr=args.lr,
epochs=args.epochs,
batch_size=args.batch_size,
train_size=n_train,
validation_size=n_val,
hidden_size=args.hidden_size,
emb_size=args.emb_size,
fea_dim=args.fea_dim, ## dim of feature for computing loss
input_dim=input_dim,
input_size = input_size,
class_num=args.n_class,
ins_temp=args.temperature,
clu_temp=args.temperature,
n_views=2, ## this is for pairwise comparison
n_rep = n_rep,
first_kernel_size = args.first_kernel_size,
dropout_rate = args.dropout_rate,
device = device,
smooth = args.smooth,
class_weights = class_weights,
modelname = args.model,
beta = 1 ## penalty for encoder decoder, need to tune according to different data
)
print("Start training\n")
if args.labpath != 'null':
module = ContrastLearn_lab(hparams)
else:
module = ContrastLearn(hparams)
if torch.__version__.startswith("1"):
trainer = pl.Trainer(gpus=args.gpus, max_epochs=hparams.epochs) # gpus deprecated in 1.7 and removed in 2.0
else:
trainer = pl.Trainer(devices=args.gpus, max_epochs=hparams.epochs)
trainer.fit(module)
checkpoint_file = args.modelpath
trainer.save_checkpoint(checkpoint_file)