-
Notifications
You must be signed in to change notification settings - Fork 448
/
Copy pathmake_layers.py
304 lines (240 loc) · 9.36 KB
/
make_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from __future__ import annotations
from fractions import Fraction
from math import ceil
from typing import TYPE_CHECKING, NamedTuple
import numpy as np
from auto_editor.analyze import initLevels
from auto_editor.ffwrapper import FileInfo
from auto_editor.lang.palet import Lexer, Parser, env, interpret, is_boolean_array
from auto_editor.lib.data_structs import print_str
from auto_editor.lib.err import MyError
from auto_editor.timeline import ASpace, TlAudio, TlVideo, VSpace, v1, v3
from auto_editor.utils.func import mut_margin
from auto_editor.utils.types import Args, CoerceError, time
if TYPE_CHECKING:
from numpy.typing import NDArray
from auto_editor.utils.bar import Bar
from auto_editor.utils.chunks import Chunks
from auto_editor.utils.log import Log
BoolList = NDArray[np.bool_]
class Clip(NamedTuple):
start: int
dur: int
offset: int
speed: float
src: FileInfo
def clipify(chunks: Chunks, src: FileInfo, start: int = 0) -> list[Clip]:
clips: list[Clip] = []
i = 0
for chunk in chunks:
if chunk[2] > 0 and chunk[2] < 99999.0:
dur = round((chunk[1] - chunk[0]) / chunk[2])
if dur == 0:
continue
offset = int(chunk[0] / chunk[2])
if not (clips and clips[-1].start == round(start)):
clips.append(Clip(start, dur, offset, chunk[2], src))
start += dur
i += 1
return clips
def make_av(src: FileInfo, all_clips: list[list[Clip]]) -> tuple[VSpace, ASpace]:
assert type(src) is FileInfo
vtl: VSpace = []
atl: ASpace = [[] for _ in range(len(src.audios))]
for clips in all_clips:
for c in clips:
if src.videos:
if len(vtl) == 0:
vtl.append([])
vtl[0].append(TlVideo(c.start, c.dur, c.src, c.offset, c.speed, 0))
for c in clips:
for a in range(len(src.audios)):
atl[a].append(TlAudio(c.start, c.dur, c.src, c.offset, c.speed, 1, a))
return vtl, atl
def make_sane_timebase(fps: Fraction) -> Fraction:
tb = round(fps, 2)
ntsc_60 = Fraction(60_000, 1001)
ntsc = Fraction(30_000, 1001)
film_ntsc = Fraction(24_000, 1001)
if tb == round(ntsc_60, 2):
return ntsc_60
if tb == round(ntsc, 2):
return ntsc
if tb == round(film_ntsc, 2):
return film_ntsc
return tb
def parse_time(val: str, arr: NDArray, tb: Fraction) -> int: # raises: `CoerceError`
if val == "start":
return 0
if val == "end":
return len(arr)
num = time(val, tb)
return num if num >= 0 else num + len(arr)
def make_timeline(
sources: list[FileInfo],
args: Args,
sr: int,
bar: Bar,
log: Log,
) -> v3:
inp = None if not sources else sources[0]
if inp is None:
tb, res = Fraction(30), (1920, 1080)
else:
tb = make_sane_timebase(
inp.get_fps() if args.frame_rate is None else args.frame_rate
)
res = inp.get_res() if args.resolution is None else args.resolution
try:
start_margin = time(args.margin[0], tb)
end_margin = time(args.margin[1], tb)
except CoerceError as e:
log.error(e)
has_loud = np.array([], dtype=np.bool_)
src_index = np.array([], dtype=np.int32)
try:
stdenv = __import__("auto_editor.lang.stdenv", fromlist=["lang"])
env.update(stdenv.make_standard_env())
except ImportError:
func = log.error if args.config else log.debug
func("Failed to import standard env")
if args.config:
# Edit `env` with user-defined code.
with open("config.pal") as file:
parser = Parser(Lexer("config.pal", file.read()))
interpret(env, parser)
results = []
for i, src in enumerate(sources):
try:
parser = Parser(Lexer("`--edit`", args.edit))
if log.is_debug:
log.debug(f"edit: {parser}")
env["timebase"] = tb
env["@levels"] = initLevels(src, tb, bar, args.no_cache, log)
inter_result = interpret(env, parser)
if len(inter_result) == 0:
log.error("Expression in --edit must return a bool-array, got nothing")
result = inter_result[-1]
if callable(result):
result = result()
except MyError as e:
log.error(e)
if not is_boolean_array(result):
log.error(
f"Expression in --edit must return a bool-array, got {print_str(result)}"
)
mut_margin(result, start_margin, end_margin)
results.append(result)
if all(len(result) == 0 for result in results):
if "subtitle" in args.edit:
log.error("No file(s) have the selected subtitle stream.")
if "motion" in args.edit:
log.error("No file(s) have the selected video stream.")
if "audio" in args.edit:
log.error("No file(s) have the selected audio stream.")
src_indexes = []
for i in range(0, len(results)):
if len(results[i]) == 0:
results[i] = initLevels(sources[i], tb, bar, args.no_cache, log).all()
src_indexes.append(np.full(len(results[i]), i, dtype=np.int32))
has_loud = np.concatenate(results)
src_index = np.concatenate(src_indexes)
if len(has_loud) == 0:
log.error("Empty timeline. Nothing to do.")
# Setup for handling custom speeds
speed_index = has_loud.astype(np.uint)
speed_map = [args.silent_speed, args.video_speed]
speed_hash = {
0: args.silent_speed,
1: args.video_speed,
}
def get_speed_index(speed: float) -> int:
if speed in speed_map:
return speed_map.index(speed)
speed_map.append(speed)
speed_hash[len(speed_map) - 1] = speed
return len(speed_map) - 1
try:
for _range in args.cut_out:
# always cut out even if 'silent_speed' is not 99,999
pair = [parse_time(val, speed_index, tb) for val in _range]
speed_index[pair[0] : pair[1]] = get_speed_index(99_999)
for _range in args.add_in:
# set to 'video_speed' index
pair = [parse_time(val, speed_index, tb) for val in _range]
speed_index[pair[0] : pair[1]] = 1
for speed_range in args.set_speed_for_range:
start_in = parse_time(speed_range[1], speed_index, tb)
end_in = parse_time(speed_range[2], speed_index, tb)
speed_index[start_in:end_in] = get_speed_index(speed_range[0])
except CoerceError as e:
log.error(e)
def echunk(
arr: NDArray, src_index: NDArray[np.int32]
) -> list[tuple[FileInfo, int, int, float]]:
arr_length = len(has_loud)
chunks = []
start = 0
doi = 0
for j in range(1, arr_length):
if (arr[j] != arr[j - 1]) or (src_index[j] != src_index[j - 1]):
src = sources[src_index[j - 1]]
chunks.append((src, start, j - doi, speed_map[arr[j - 1]]))
start = j - doi
if src_index[j] != src_index[j - 1]:
start = 0
doi = j
src = sources[src_index[j]]
chunks.append((src, start, arr_length, speed_map[arr[j]]))
return chunks
# Assert timeline is monotonic because non-monotonic timelines are incorrect
# here and causes back-seeking (performance issue) in video rendering.
# We don't properly check monotonicity for multiple sources, so skip those.
check_monotonic = len(sources) == 1
last_i = 0
clips: list[Clip] = []
start = 0
for chunk in echunk(speed_index, src_index):
if chunk[3] != 99999:
dur = int((chunk[2] - chunk[1]) / chunk[3])
if dur == 0:
continue
offset = ceil(chunk[1] / chunk[3])
if check_monotonic:
max_end = start + dur - 1
this_i = round((offset + max_end - start) * chunk[3])
if this_i < last_i:
raise ValueError("not monotonic", sources, this_i, last_i)
last_i = this_i
clips.append(Clip(start, dur, offset, chunk[3], chunk[0]))
start += dur
vtl: VSpace = []
atl: ASpace = []
for c in clips:
if c.src.videos:
if len(vtl) == 0:
vtl.append([])
vtl[0].append(TlVideo(c.start, c.dur, c.src, c.offset, c.speed, 0))
for c in clips:
for a in range(len(c.src.audios)):
if a >= len(atl):
atl.append([])
atl[a].append(TlAudio(c.start, c.dur, c.src, c.offset, c.speed, 1, a))
# Turn long silent/loud array to formatted chunk list.
# Example: [1, 1, 1, 2, 2], {1: 1.0, 2: 1.5} => [(0, 3, 1.0), (3, 5, 1.5)]
def chunkify(arr: NDArray, smap: dict[int, float]) -> Chunks:
arr_length = len(arr)
chunks = []
start = 0
for j in range(1, arr_length):
if arr[j] != arr[j - 1]:
chunks.append((start, j, smap[arr[j - 1]]))
start = j
chunks.append((start, arr_length, smap[arr[j]]))
return chunks
if len(sources) == 1 and inp is not None:
chunks = chunkify(speed_index, speed_hash)
v1_compatiable = v1(inp, chunks)
else:
v1_compatiable = None
return v3(inp, tb, sr, res, args.background, vtl, atl, v1_compatiable)