-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
147 lines (123 loc) · 5.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.nn.functional as F
import torch.optim as optim
import sys
import os
from tqdm import tqdm
sys.path.append(os.getcwd())
from save import save_single_pic
class VAE(nn.Module):
def __init__(self, input_size=72, hidden_size=400, latent_size=20):
super(VAE, self).__init__()
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
# 编码
x = self.encoder(x)
mu, logvar = torch.chunk(x, 2, dim=1)
z = self.reparameterize(mu, logvar)
# 解码
x_recon = self.decoder(z)
return x_recon, mu, logvar
# 定义损失函数
def loss_function(recon_x, x, mu, logvar):
BCE = F.smooth_l1_loss(recon_x, x)
# Kullback-Leibler散度项
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
def init(smpl_layer, target, device, cfg, params):
# params = {}
# params["pose_params"] = torch.zeros(target.shape[0], 72)
# params["shape_params"] = torch.zeros(target.shape[0], 10)
# params["scale"] = torch.ones([1])
smpl_layer = smpl_layer.to(device)
params["pose_params"] = params["pose_params"].to(device)
params["shape_params"] = params["shape_params"].to(device)
target = target.to(device)
params["scale"] = params["scale"].to(device)
params["pose_params"].requires_grad = True
params["shape_params"].requires_grad = bool(cfg.TRAIN.OPTIMIZE_SHAPE)
params["scale"].requires_grad = bool(cfg.TRAIN.OPTIMIZE_SCALE)
optim_params = [{'params': params["pose_params"], 'lr': cfg.TRAIN.LEARNING_RATE},
{'params': params["shape_params"], 'lr': cfg.TRAIN.LEARNING_RATE},
{'params': params["scale"], 'lr': cfg.TRAIN.LEARNING_RATE*10},]
optimizer = optim.Adam(optim_params)
# optimizer = optim.SGD(optim_params)
index = {}
smpl_index = []
dataset_index = []
for tp in cfg.DATASET.DATA_MAP:
smpl_index.append(tp[0])
dataset_index.append(tp[1])
index["smpl_index"] = torch.tensor(smpl_index).to(device)
index["dataset_index"] = torch.tensor(dataset_index).to(device)
return smpl_layer, params, target, optimizer, index
def train(smpl_layer, target, device, cfg, meters,params):
res = []
smpl_layer, params, target, optimizer_smpl, index = \
init(smpl_layer, target, device, cfg,params)
pose_params = params["pose_params"]
shape_params = params["shape_params"]
scale = params["scale"]
# 创建VAE模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vae_model = VAE().to(device)
# 定义优化器
optimizer_vae = optim.Adam(vae_model.parameters(), lr=0.001)
input_data = target.index_select(1, index["dataset_index"]).reshape(-1,72)
with torch.no_grad():
recon_data, mu, logvar = vae_model(input_data)
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
params["scale"]*=(torch.max(torch.abs(target))/torch.max(torch.abs(Jtr)))
print('---------------------------------------------------------vae------------------------------------------------------------------------------------------------------------')
for epoch_vae in range(1000):
recon_data, mu, logvar = vae_model(input_data)
lossvae = loss_function(recon_data, input_data, mu, logvar)
optimizer_vae.zero_grad()
lossvae.backward()
optimizer_vae.step()
if epoch_vae % cfg.TRAIN.WRITE == 0 or epoch_vae<10:
print("Epoch {}, lossPerBatch={:.6f}".format( epoch_vae, float(lossvae)))
print('-------------------------------------------------------smpl--------------------------------------------------------------------------------------')
for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)):
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
loss_smpl = F.smooth_l1_loss(params["scale"]*Jtr.index_select(1, index["smpl_index"]), target.index_select(1, index["dataset_index"]))
optimizer_smpl.zero_grad()
loss_smpl.backward()
optimizer_smpl.step()
meters.update_early_stop(float(loss_smpl))
if meters.update_res:
res = [pose_params, shape_params, scale ,verts, Jtr]
print(verts.shape)
print(Jtr.shape)
# torch.Size([2, 6890, 3])
# torch.Size([2, 24, 3])
if meters.early_stop:
break
print
if epoch % cfg.TRAIN.WRITE == 0 or epoch<10:
# logger.info("Epoch {}, lossPerBatch={:.6f}, scale={:.4f}".format(
# epoch, float(loss),float(scale)))
print("Epoch {}, lossPerBatch={:.6f}, scale={:.4f}".format(
epoch, float(loss_smpl),float(scale)))
print('----------------------------------------------------lianhe-------------------------------------------------------------------')
for epoch_sv in range(10000):
end_recon_data, mu, logvar = vae_model(input_data)
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
loss_sv = F.smooth_l1_loss(scale*Jtr.index_select(1, index["smpl_index"]),end_recon_data.reshape(-1,24,3))
optimizer_vae.zero_grad()
optimizer_smpl.zero_grad()
loss_sv.backward()
optimizer_vae.step()
optimizer_smpl.step()
if loss_sv.item() <= 0.002:
break
if epoch_sv % cfg.TRAIN.WRITE == 0 or epoch_sv<10:
print("Epoch {}, lossPerBatch={:.6f}".format( epoch_sv, float(loss_sv)))
res = [pose_params, shape_params, scale ,verts, Jtr]
return res