-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsocialtrans_train.py
executable file
·153 lines (129 loc) · 4.86 KB
/
socialtrans_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import importlib
import torch
import numpy as np
from social_trans import SocialTrans
from data import Dataloader
from utils import seed, get_rng_state, ADE_FDE
import torch.nn as nn
import torch.optim as optim
import random
import argparse
# Argument Parser
parser = argparse.ArgumentParser()
parser.add_argument("--train", nargs='+', default=[])
parser.add_argument("--test", nargs='+', default=[])
parser.add_argument("--frameskip", type=int, default=1)
parser.add_argument("--config", type=str, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--seed", type=int, default=1)
if __name__ == "__main__":
settings = parser.parse_args()
print('settings.config', settings.config)
# Load configuration
spec = importlib.util.spec_from_file_location("config", settings.config)
config = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config)
# Device setup
if settings.device is None:
settings.device = "cuda" if torch.cuda.is_available() else "cpu"
settings.device = torch.device(settings.device)
# Seed setup
seed(settings.seed)
init_rng_state = get_rng_state(settings.device)
rng_state = init_rng_state
# Prepare datasets
kwargs = dict(
batch_first=False,
frameskip=settings.frameskip,
ob_horizon=config.OB_HORIZON,
pred_horizon=config.PRED_HORIZON,
device=settings.device,
seed=settings.seed
)
train_data = None
if settings.train:
if config.INCLUSIVE_GROUPS is not None:
inclusive = [config.INCLUSIVE_GROUPS for _ in range(len(settings.train))]
else:
inclusive = None
train_dataset = Dataloader(
settings.train, **kwargs, inclusive_groups=inclusive,
flip=True, rotate=True, scale=True,
batch_size=config.BATCH_SIZE, shuffle=True, batches_per_epoch=config.EPOCH_BATCHES
)
train_data = torch.utils.data.DataLoader(
train_dataset,
collate_fn=train_dataset.collate_fn,
batch_sampler=train_dataset.batch_sampler
)
batches = train_dataset.batches_per_epoch
# Set random seed for reproducibility
seed = 42
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Model, loss function, and optimizer setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ztrans = SocialTrans(x_in=4, neighbor_in=3, ob_T=config.PRED_HORIZON, pred_T=8).to(device)
loss_fn = nn.MSELoss(reduction='mean')
optimizer = optim.Adam(ztrans.parameters(), lr=0.0001)
# Training parameters
num_epochs = 800
ztrans.train()
ade = 100000
fde = 100000
lossss = 100000
# Training loop
for epoch in range(num_epochs):
total_loss = 0.0
total_ade = 0.0
total_fde = 0.0
num = 0
for x, y, nei in train_data:
num += 1
optimizer.zero_grad()
y = y.to(device)
pred = ztrans(x.to(device), nei[:config.PRED_HORIZON].to(device))
if len(pred.size()) == 4:
loss = torch.sqrt(loss_fn(pred, y.unsqueeze(0).repeat(config.PRED_SAMPLES, 1, 1, 1)))
losstrans = ztrans.loss(pred, y.unsqueeze(0).repeat(config.PRED_SAMPLES, 1, 1, 1))
else:
loss = torch.sqrt(loss_fn(pred, y))
losstrans = ztrans.loss(pred, y)
loss.backward()
optimizer.step()
total_loss += loss.item()
total_ade += losstrans['ade'].item()
total_fde += losstrans['fde'].item()
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item()}')
avg_loss = total_loss / len(train_data)
avg_ade = total_ade / len(train_data)
avg_fde = total_fde / len(train_data)
print(f'Epoch [{epoch + 1}/{num_epochs}], Average Loss: {avg_loss}, Average ADE: {avg_ade}, Average FDE: {avg_fde}')
print('---------------------------------------------------------------------')
if avg_loss < lossss:
ade = avg_ade
fde = avg_fde
lossss = avg_loss
print('save:------', ade, fde, lossss)
state_best = {
'model': ztrans.state_dict(),
'optimizer': optimizer.state_dict(),
'ade': ade,
'fde': fde,
'loss': lossss
}
state = {
'model': ztrans.state_dict(),
'optimizer': optimizer.state_dict(),
'ade': ade,
'fde': fde,
'loss': lossss
}
torch.save(state, 'trans.pth')
torch.save(state_best, 'trans_best.pth')
print("Training finished and model saved!")