cd Seg_selection
Please install dependencies by
conda env create -f Seg_selection/environment.yml
conda activate stylegan-mask2former
- Sorry that the environment package file may contain additional packages that are not essential.
This code relies on the Mask2Former repo. To set up, follow these steps:
cd Seg_selection/
# conda environment setup
git clone https://github.com/facebookresearch/detectron2.git
cd detectron2
pip install -e .
pip install git+https://github.com/cocodataset/panopticapi.git
pip install git+https://github.com/mcordts/cityscapesScripts.git
cd ..
git clone https://github.com/facebookresearch/Mask2Former.git
cd Mask2Former
pip install -r requirements.txt
cd mask2former/modeling/pixel_decoder/ops
sh make.sh
- For more detailed instructions please refer to Mask2Former installation instructions.
-
Download the pretrained StyleGAN2 checkpoint files as follows:
cd ../Pseudo_generation wget https://github.com/Yuxinn-J/Scenimefy/releases/download/v0.0.1/lhq-220000.pt -P checkpoints wget https://github.com/Yuxinn-J/Scenimefy/releases/download/v0.0.1/shinkai-221000.pt -P checkpoints
-
Download the pretrained Segmentation models
We use the following configuration for semantic segmentation: ade20k-swin-base-config. You can download the corresponding checkpoint using following script:
cd ../Seg_selection wget -P pretrained_Mask2Former/ https://dl.fbaipublicfiles.com/maskformer/mask2former/ade20k/semantic/maskformer2_swin_base_384_bs16_160k_res640/model_final_503e96.pkl
Before running following command, ensure that you add the directory to your sys.path
within the script to import Generator
module from different directory.
python generate_pair.py
-
arguments for customization:
--truncation: Truncation ratio (default: 0.7). --ckpt1: Path to the original model checkpoint. --ckpt2: Path to the finetuned model checkpoint. --num_sample: Number of paired samples to be generated (default: 30). --output_path: Path to save the paired sample images (default: "./data/s2a_shinkai"). --seg_loss_th: Threshold of segmentation loss for semantic consistency (default: 5.0). --seg_cat_th: Threshold of detected category for semantic abundance (default: 1).