Skip to content

๐Ÿ› ๏ธ Class-imbalanced Ensemble Learning Toolbox. | ็ฑปๅˆซไธๅนณ่กก/้•ฟๅฐพๆœบๅ™จๅญฆไน ๅบ“

License

Notifications You must be signed in to change notification settings

ZhiningLiu1998/imbalanced-ensemble

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

IMBENS: Class-Imbalance Benchmark and Solutions

โณQuick Start with our 5-minute Guide & Detailed Examples

Status CircleCI Status Read the Docs
Releases
Traffic
Documentation
Articles
Language

IMBENS (imported as imbens) is an extensible Python library for quick implementation, evaluation, and comparison for general class-imbalanced learning solutions. Currently, IMBENS includes 30+ algorithms for class-imbalanced classification, including under-sampling (selection or generation-based), over-sampling (e.g., SMOTE and its variants), cost-sensitive learning (e.g., AdaCost), and ensemble methods that integrate these techniques (SMOTEBagging, RUSBoost, SelfPacedEnsemble, etc).

IMBENS is built on top of scikit-learn design principles and was initially built based on imbalanced-learn, but has since evolved independently and no longer depends on it. Users can take advantage of various utilities from the sklearn community for data processing/cross-validation/hyper-parameter tuning, etc.

๐ŸŒˆ IMBENS Highlights

  • ๐Ÿง‘โ€๐Ÿ’ป Ease-of-use: Unified user-friendly scikit-learn-style APIs.
  • ๐Ÿ“’ Documentation: Detailed documentation and examples.
  • ๐Ÿš€ Efficiency: Optimized efficiency with parallelization using joblib.
  • ๐Ÿ“Š Benchmarking: Running & comparing multiple models with our visualizer.
  • ๐Ÿ“บ Monitoring: Powerful, customizable, interactive training logging.
  • ๐Ÿป Compatibility: Work seamlessly with scikit-learn and other tools for sklearn community.
  • ๐Ÿ“ˆ Functionality: Extended existing binary techniques to multi-class setting.
  • ๐Ÿ‘ฏย Extensibility: Implement new methods via well-designed inheritance and polymorphism.

โœ‚๏ธ Use IMBENS for class-imbalanced classification with <5 lines of code:

# Train an SPE classifier
from imbens.ensemble import SelfPacedEnsembleClassifier
clf = SelfPacedEnsembleClassifier(random_state=42)
clf.fit(X_train, y_train)

# Predict with an SPE classifier
y_pred = clf.predict(X_test)

๐Ÿค— Citing IMBENS Package

We appreciate your citation if you find our work helpful! The BibTeX entry:

@misc{liu2022imbens,
  author       = {Zhining Liu},
  title        = {IMBENS: Python Toolbox for Class-Imbalanced Ensemble Learning},
  howpublished = {\url{https://github.com/ZhiningLiu1998/imbalanced-ensemble}},
  year         = {2025},
}

๐Ÿ‘ฏโ€โ™‚๏ธ Contribute to IMBENS

Join us and become a contributor! Please refer to the contributing guidelines.

๐Ÿ“š Table of Contents

Installation

It is recommended to use pip for installation.
Please make sure the latest version is installed to avoid potential problems:

$ pip install imbalanced-ensemble            # normal install
$ pip install --upgrade imbalanced-ensemble  # update if needed

Or you can install imbalanced-ensemble by clone this repository:

$ git clone https://github.com/ZhiningLiu1998/imbalanced-ensemble.git
$ cd imbalanced-ensemble
$ pip install .

imbalanced-ensemble requires following dependencies:

5-min Quick Start with IMBENS

Here, we provide some quick guides to help you get started with IMBENS.
We strongly encourage users to check out the example gallery for more comprehensive usage examples, which demonstrate many advanced features of IMBENS.

A minimal working example

Taking self-paced ensemble [1] as an example, it only requires less than 10 lines of code to deploy it:

>>> from imbens.ensemble import SelfPacedEnsembleClassifier
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> 
>>> X, y = make_classification(n_samples=1000, n_classes=3,
...                            n_informative=4, weights=[0.2, 0.3, 0.5],
...                            random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...                            X, y, test_size=0.2, random_state=42)
>>> clf = SelfPacedEnsembleClassifier(random_state=0)
>>> clf.fit(X_train, y_train)
SelfPacedEnsembleClassifier(...)
>>> clf.predict(X_test)  
array([...])

Visualize ensemble classifiers

The imbens.visualizer sub-module provide an ImbalancedEnsembleVisualizer. It can be used to visualize the ensemble estimator(s) for further information or comparison. Please refer to visualizer documentation and examples for more details.

Fit an ImbalancedEnsembleVisualizer

from imbens.ensemble import SelfPacedEnsembleClassifier
from imbens.ensemble import RUSBoostClassifier
from imbens.ensemble import EasyEnsembleClassifier
from sklearn.tree import DecisionTreeClassifier

# Fit ensemble classifiers
init_kwargs = {'estimator': DecisionTreeClassifier()}
ensembles = {
    'spe': SelfPacedEnsembleClassifier(**init_kwargs).fit(X_train, y_train),
    'rusboost': RUSBoostClassifier(**init_kwargs).fit(X_train, y_train),
    'easyens': EasyEnsembleClassifier(**init_kwargs).fit(X_train, y_train),
}

# Fit visualizer
from imbens.visualizer import ImbalancedEnsembleVisualizer
visualizer = ImbalancedEnsembleVisualizer().fit(ensembles=ensembles)

Plot performance curves

fig, axes = visualizer.performance_lineplot()

Plot confusion matrices

fig, axes = visualizer.confusion_matrix_heatmap()

Customizing training log

All ensemble classifiers in IMBENS support customizable training logging. The training log is controlled by 3 parameters eval_datasets, eval_metrics, and training_verbose of the fit() method. Read more details in the fit documentation.

Enable auto training log

clf.fit(..., train_verbose=True)
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ             โ”ƒ                          โ”ƒ            Data: train             โ”ƒ
โ”ƒ #Estimators โ”ƒ    Class Distribution    โ”ƒ               Metric               โ”ƒ
โ”ƒ             โ”ƒ                          โ”ƒ  acc    balanced_acc   weighted_f1 โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ      1      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.838      0.877          0.839    โ”ƒ
โ”ƒ      5      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.924      0.949          0.924    โ”ƒ
โ”ƒ     10      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.954      0.970          0.954    โ”ƒ
โ”ƒ     15      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.979      0.986          0.979    โ”ƒ
โ”ƒ     20      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.990      0.993          0.990    โ”ƒ
โ”ƒ     25      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.994      0.996          0.994    โ”ƒ
โ”ƒ     30      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.988      0.992          0.988    โ”ƒ
โ”ƒ     35      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.999      0.999          0.999    โ”ƒ
โ”ƒ     40      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.995      0.997          0.995    โ”ƒ
โ”ƒ     45      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.995      0.997          0.995    โ”ƒ
โ”ƒ     50      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.993      0.995          0.993    โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ    final    โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.993      0.995          0.993    โ”ƒ
โ”—โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”›

Customize granularity and content of the training log

clf.fit(..., 
        train_verbose={
            'granularity': 10,
            'print_distribution': False,
            'print_metrics': True,
        })
Click to view example output
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ             โ”ƒ            Data: train             โ”ƒ
โ”ƒ #Estimators โ”ƒ               Metric               โ”ƒ
โ”ƒ             โ”ƒ  acc    balanced_acc   weighted_f1 โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ      1      โ”ƒ 0.964      0.970          0.964    โ”ƒ
โ”ƒ     10      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ƒ     20      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ƒ     30      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ƒ     40      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ƒ     50      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ    final    โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”—โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”›

Add evaluation dataset(s)

  clf.fit(..., 
          eval_datasets={
              'valid': (X_valid, y_valid)
          })
Click to view example output
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ             โ”ƒ            Data: train             โ”ƒ            Data: valid             โ”ƒ
โ”ƒ #Estimators โ”ƒ               Metric               โ”ƒ               Metric               โ”ƒ
โ”ƒ             โ”ƒ  acc    balanced_acc   weighted_f1 โ”ƒ  acc    balanced_acc   weighted_f1 โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ      1      โ”ƒ 0.939      0.961          0.940    โ”ƒ 0.935      0.933          0.936    โ”ƒ
โ”ƒ     10      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.971      0.974          0.971    โ”ƒ
โ”ƒ     20      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.982      0.981          0.982    โ”ƒ
โ”ƒ     30      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.983      0.983          0.983    โ”ƒ
โ”ƒ     40      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.983      0.982          0.983    โ”ƒ
โ”ƒ     50      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.983      0.982          0.983    โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ    final    โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.983      0.982          0.983    โ”ƒ
โ”—โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”›

Customize evaluation metric(s)

from sklearn.metrics import accuracy_score, f1_score
clf.fit(..., 
        eval_metrics={
            'acc': (accuracy_score, {}),
            'weighted_f1': (f1_score, {'average':'weighted'}),
        })
Click to view example output
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ             โ”ƒ     Data: train      โ”ƒ     Data: valid      โ”ƒ
โ”ƒ #Estimators โ”ƒ        Metric        โ”ƒ        Metric        โ”ƒ
โ”ƒ             โ”ƒ  acc    weighted_f1  โ”ƒ  acc    weighted_f1  โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ      1      โ”ƒ 0.942      0.961     โ”ƒ 0.919      0.936     โ”ƒ
โ”ƒ     10      โ”ƒ 1.000      1.000     โ”ƒ 0.976      0.976     โ”ƒ
โ”ƒ     20      โ”ƒ 1.000      1.000     โ”ƒ 0.977      0.977     โ”ƒ
โ”ƒ     30      โ”ƒ 1.000      1.000     โ”ƒ 0.981      0.980     โ”ƒ
โ”ƒ     40      โ”ƒ 1.000      1.000     โ”ƒ 0.980      0.979     โ”ƒ
โ”ƒ     50      โ”ƒ 1.000      1.000     โ”ƒ 0.981      0.980     โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ    final    โ”ƒ 1.000      1.000     โ”ƒ 0.981      0.980     โ”ƒ
โ”—โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”›

About imbalanced learning

Class-imbalance (also known as the long-tail problem) is the fact that the classes are not represented equally in a classification problem, which is quite common in practice. For instance, fraud detection, prediction of rare adverse drug reactions and prediction gene families. Failure to account for the class imbalance often causes inaccurate and decreased predictive performance of many classification algorithms. Imbalanced learning aims to tackle the class imbalance problem to learn an unbiased model from imbalanced data.

For more resources on imbalanced learning, please refer to awesome-imbalanced-learning.

Acknowledgements

IMBENS was initially developed on top of the awesome imbalanced-learn, but has undergone heavy developments to implement many important techniques and features. The infrastructure also underwent significant refactoring to support advanced ensemble learning features that are essential to practical usability (fine-grained training control, parallel computing, multi-class support, training logs, visualization, etc).

List of Methods and References

*(Click to jump to the API reference page)

  • Under-sampling
    • Selection-based
      1. RandomUnderSampler
      2. NearMiss Mani, I., & Zhang, I. (2003, August). kNN approach to unbalanced data distributions: a case study involving information extraction. In Proceedings of workshop on learning from imbalanced datasets (Vol. 126, No. 1, pp. 1-7). United States: ICML.
      3. InstanceHardnessThreshold Smith, M. R., Martinez, T., & Giraud-Carrier, C. (2014). An instance level analysis of data complexity. Machine learning, 95, 225-256.
    • Generation-based
      1. ClusterCentroids Lin, W. C., Tsai, C. F., Hu, Y. H., & Jhang, J. S. (2017). Clustering-based undersampling in class-imbalanced data. Information Sciences, 409, 17-26.
  • Cleaning
    • Distance-based
      1. TomekLinks Tomek, I. (1976). Two modifications of CNN.
      2. EditedNearestNeighbours Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, (3), 408-421.
      3. RepeatedEditedNearestNeighbours Tomek, I. (1976). An experiment with the edited nearest-nieghbor rule
      4. AllKNN Tomek, I. (1976). An experiment with the edited nearest-nieghbor rule.
      5. OneSidedSelection Kubat, M., & Matwin, S. (1997, July). Addressing the curse of imbalanced training sets: one-sided selection. In Icml (Vol. 97, No. 1, p. 179).
      6. NeighbourhoodCleaningRule Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class distribution. In Artificial Intelligence in Medicine: 8th Conference on Artificial Intelligence in Medicine in Europe, AIME 2001 Cascais, Portugal, July 1โ€“4, 2001, Proceedings 8 (pp. 63-66). Springer Berlin Heidelberg.
  • Oversamping
    • Generation-based
      1. RandomOverSampler
      2. SMOTE Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
      3. BorderlineSMOTE Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Berlin, Heidelberg: Springer Berlin Heidelberg.
      4. SVMSMOTE Nguyen, H. M., Cooper, E. W., & Kamei, K. (2011). Borderline over-sampling for imbalanced data classification. International Journal of Knowledge Engineering and Soft Data Paradigms, 3(1), 4-21.
      5. ADASYN He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). Ieee.
  • Ensemble Modeling
    • Under-sampling + Ensemble
      1. SelfPacedEnsembleClassifier Liu, Z., Cao, W., Gao, Z., Bian, J., Chen, H., Chang, Y., & Liu, T. Y. (2020, April). Self-paced ensemble for highly imbalanced massive data classification. In 2020 IEEE 36th international conference on data engineering (ICDE) (pp. 841-852). IEEE.
      2. BalanceCascadeClassifier Liu, X. Y., Wu, J., & Zhou, Z. H. (2008). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539-550.
      3. BalancedRandomForestClassifier Khoshgoftaar, T. M., Golawala, M., & Van Hulse, J. (2007, October). An empirical study of learning from imbalanced data using random forest. In 19th IEEE international conference on tools with artificial intelligence (ICTAI 2007) (Vol. 2, pp. 310-317). IEEE.
      4. EasyEnsembleClassifier Liu, X. Y., Wu, J., & Zhou, Z. H. (2008). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539-550.
      5. RUSBoostClassifier Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2009). RUSBoost: A hybrid approach to alleviating class imbalance. IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 40(1), 185-197.
      6. UnderBaggingClassifier Barandela, R., Valdovinos, R. M., & Sรกnchez, J. S. (2003). New applications of ensembles of classifiers. Pattern Analysis & Applications, 6, 245-256.
    • Over-sampling + Ensemble
      1. OverBoostClassifier Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003, September). SMOTEBoost: Improving prediction of the minority class in boosting. In European conference on principles of data mining and knowledge discovery (pp. 107-119). Berlin, Heidelberg: Springer Berlin Heidelberg.
      2. SMOTEBoostClassifier Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003, September). SMOTEBoost: Improving prediction of the minority class in boosting. In European conference on principles of data mining and knowledge discovery (pp. 107-119). Berlin, Heidelberg: Springer Berlin Heidelberg.
      3. OverBaggingClassifier Wang, S., & Yao, X. (2009, March). Diversity analysis on imbalanced data sets by using ensemble models. In 2009 IEEE symposium on computational intelligence and data mining (pp. 324-331). IEEE.
      4. SMOTEBaggingClassifier Wang, S., & Yao, X. (2009, March). Diversity analysis on imbalanced data sets by using ensemble models. In 2009 IEEE symposium on computational intelligence and data mining (pp. 324-331). IEEE.
  • Reweighting-based
    • Cost-sensitive Learning
      1. AdaCostClassifier Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999, June). AdaCost: misclassification cost-sensitive boosting. In Icml (Vol. 99, pp. 97-105).
      2. AdaUBoostClassifier Karakoulas, G., & Shawe-Taylor, J. (1998). Optimizing classifers for imbalanced training sets. Advances in neural information processing systems, 11.
      3. AsymBoostClassifier Viola, P., & Jones, M. (2001). Fast and robust classification using asymmetric adaboost and a detector cascade. Advances in neural information processing systems, 14.
  • Compatible
    • CompatibleAdaBoostClassifier Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
    • CompatibleBaggingClassifier Guillaume Lemaรฎtre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17):1โ€“5, 2017.

Related Projects

Check out Zhining's other open-source projects!


Imbalanced Learning [Awesome]

GitHub stars

Machine Learning [Awesome]

GitHub stars

Self-paced Ensemble [ICDE]

GitHub stars

Meta-Sampler [NeurIPS]

GitHub stars

Contributors โœจ

Thanks goes to these wonderful people (emoji key):

Zhining Liu
Zhining Liu

๐Ÿ’ป ๐Ÿค” ๐Ÿšง ๐Ÿ› ๐Ÿ“–
leaphan
leaphan

๐Ÿ›
hannanhtang
hannanhtang

๐Ÿ›
H.J.Ren
H.J.Ren

๐Ÿ›
Marc Skov Madsen
Marc Skov Madsen

๐Ÿ›

This project follows the all-contributors specification. Contributions of any kind welcome!