-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
46 lines (39 loc) · 1.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
'''
This file define models for resolve captcha problem
'''
import torch
import torch.nn as nn
class AlexNet(nn.Module):
'''
This model is based on Alexnet
'''
def __init__(self, num_classes: int = 10, num_digits: int = 4) -> None:
super().__init__()
self.num_classes = num_classes
self.num_digits = num_digits
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(9856, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, num_classes * num_digits),
)
def forward(self, tensor: torch.Tensor) -> torch.Tensor:
'''
Feed-forward
'''
tensor = self.features(tensor)
tensor = torch.flatten(tensor, 1)
tensor = self.classifier(tensor)
tensor = torch.reshape(
tensor, (tensor.shape[0], self.num_classes, self.num_digits))
return tensor