-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
176 lines (134 loc) · 4.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
'''
Train model
usage: train.py [-h] [-d DATA_DIR] [--lr LR] [--batch BATCH] [-e EPOCH]
optional arguments:
-h, --help show this help message and exit
-d DATA_DIR, --data_dir DATA_DIR
image data folder.
--lr LR learning rate.
--batch BATCH batch size.
-e EPOCH, --epoch EPOCH
number of epoch for training.
'''
import argparse
import copy
from torchvision import transforms
import torch
import torch.optim as optim
import torch.nn as nn
from model import AlexNet
from utils import load_data
def feed_data(model, phase, dataloaders, criterion, optimizer, device):
'''
Feed data to model and calculate loss, accuracy
'''
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += sum([torch.equal(x, y)
for x, y in zip(preds, labels.data)])
data_len = len(dataloaders[phase].dataset)
return running_loss / data_len, float(running_corrects) / data_len
def train_model(model, dataloaders, criterion, optimizer, device, num_epochs=25):
'''
Train model
'''
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
# Calculate loss and accuracy
epoch_loss, epoch_acc = feed_data(
model, phase, dataloaders, criterion, optimizer, device)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# Deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
print('Best val Acc: {:4f}'.format(best_acc))
# Load best model weights
model.load_state_dict(best_model_wts)
return model
def create_dataloader(data_dir, batch_size):
'''
Create dataloader
'''
im_transforms = transforms.Compose([
transforms.Resize((120, 100)),
transforms.CenterCrop((120, 100)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
_, image_datasets = load_data(
data_dir, transform=im_transforms)
dataloaders_dict = {x: torch.utils.data.DataLoader(
image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4)
for x in ['train', 'val']}
return dataloaders_dict
def _main(data_dir, batch_size, learning_rate, n_epoch):
'''
Main function
'''
# Create dataloader
dataloaders_dict = create_dataloader(data_dir, batch_size)
# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Create model
model = AlexNet()
model = model.to(device)
# Observe that all parameters are being optimized
optimizer_ft = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
model = train_model(
model, dataloaders_dict, criterion, optimizer_ft, device, n_epoch)
torch.save(model, 'model.pt')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-d', '--data_dir',
default='images/char-4-epoch-6',
type=str,
help='image data folder.')
parser.add_argument(
'--lr',
default=0.0001,
type=float,
help='learning rate.')
parser.add_argument(
'--batch',
default=16,
type=int,
help='batch size.')
parser.add_argument(
'-e', '--epoch',
default=16,
type=int,
help='number of epoch for training.')
hp = parser.parse_args()
_main(hp.data_dir, hp.batch, hp.lr, hp.epoch)