You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
G:>conda.bat activate CUDA124-py312
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4070 SUPER, compute capability 8.9, VMM: yes
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4070 SUPER) - 11053 MiB free
llama_model_loader: loaded meta data with 29 key-value pairs and 339 tensors from E:.lmstudio\models\Qwen\Qwen2.5-Coder-7B-Instruct-GGUF\qwen2.5-coder-7b-instruct-q4_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2.5 Coder 7B Instruct GGUF
llama_model_loader: - kv 3: general.finetune str = Instruct-GGUF
llama_model_loader: - kv 4: general.basename str = Qwen2.5-Coder
llama_model_loader: - kv 5: general.size_label str = 7B
llama_model_loader: - kv 6: qwen2.block_count u32 = 28
llama_model_loader: - kv 7: qwen2.context_length u32 = 131072
llama_model_loader: - kv 8: qwen2.embedding_length u32 = 3584
llama_model_loader: - kv 9: qwen2.feed_forward_length u32 = 18944
llama_model_loader: - kv 10: qwen2.attention.head_count u32 = 28
llama_model_loader: - kv 11: qwen2.attention.head_count_kv u32 = 4
llama_model_loader: - kv 12: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 14: general.file_type u32 = 15
llama_model_loader: - kv 15: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 16: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,152064] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 19: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 22: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 24: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - kv 26: split.no u16 = 0
llama_model_loader: - kv 27: split.count u16 = 0
llama_model_loader: - kv 28: split.tensors.count i32 = 339
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type q4_K: 169 tensors
llama_model_loader: - type q6_K: 29 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 4.36 GiB (4.91 BPW)
init_tokenizer: initializing tokenizer for type 2
load: control token: 151661 '<|fim_suffix|>' is not marked as EOG
load: control token: 151649 '<|box_end|>' is not marked as EOG
load: control token: 151647 '<|object_ref_end|>' is not marked as EOG
load: control token: 151654 '<|vision_pad|>' is not marked as EOG
load: control token: 151659 '<|fim_prefix|>' is not marked as EOG
load: control token: 151648 '<|box_start|>' is not marked as EOG
load: control token: 151644 '<|im_start|>' is not marked as EOG
load: control token: 151646 '<|object_ref_start|>' is not marked as EOG
load: control token: 151650 '<|quad_start|>' is not marked as EOG
load: control token: 151651 '<|quad_end|>' is not marked as EOG
load: control token: 151652 '<|vision_start|>' is not marked as EOG
load: control token: 151653 '<|vision_end|>' is not marked as EOG
load: control token: 151655 '<|image_pad|>' is not marked as EOG
load: control token: 151656 '<|video_pad|>' is not marked as EOG
load: control token: 151660 '<|fim_middle|>' is not marked as EOG
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 3584
print_info: n_layer = 28
print_info: n_head = 28
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 7
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 18944
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 7B
print_info: model params = 7.62 B
print_info: general.name = Qwen2.5 Coder 7B Instruct GGUF
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 148848 'ÄĬ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: layer 0 assigned to device CUDA0
load_tensors: layer 1 assigned to device CUDA0
load_tensors: layer 2 assigned to device CUDA0
load_tensors: layer 3 assigned to device CUDA0
load_tensors: layer 4 assigned to device CUDA0
load_tensors: layer 5 assigned to device CUDA0
load_tensors: layer 6 assigned to device CUDA0
load_tensors: layer 7 assigned to device CUDA0
load_tensors: layer 8 assigned to device CUDA0
load_tensors: layer 9 assigned to device CUDA0
load_tensors: layer 10 assigned to device CUDA0
load_tensors: layer 11 assigned to device CUDA0
load_tensors: layer 12 assigned to device CUDA0
load_tensors: layer 13 assigned to device CUDA0
load_tensors: layer 14 assigned to device CUDA0
load_tensors: layer 15 assigned to device CUDA0
load_tensors: layer 16 assigned to device CUDA0
load_tensors: layer 17 assigned to device CUDA0
load_tensors: layer 18 assigned to device CUDA0
load_tensors: layer 19 assigned to device CUDA0
load_tensors: layer 20 assigned to device CUDA0
load_tensors: layer 21 assigned to device CUDA0
load_tensors: layer 22 assigned to device CUDA0
load_tensors: layer 23 assigned to device CUDA0
load_tensors: layer 24 assigned to device CUDA0
load_tensors: layer 25 assigned to device CUDA0
load_tensors: layer 26 assigned to device CUDA0
load_tensors: layer 27 assigned to device CUDA0
load_tensors: layer 28 assigned to device CUDA0
load_tensors: tensor 'token_embd.weight' (q4_K) (and 0 others) cannot be used with preferred buffer type CPU_AARCH64, using CPU instead
load_tensors: offloading 28 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 29/29 layers to GPU
load_tensors: CUDA0 model buffer size = 4168.09 MiB
load_tensors: CPU_Mapped model buffer size = 292.36 MiB
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 512
llama_init_from_model: n_ctx_per_seq = 512
llama_init_from_model: n_batch = 512
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 0
llama_init_from_model: freq_base = 1000000.0
llama_init_from_model: freq_scale = 1
llama_init_from_model: n_ctx_per_seq (512) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 512, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1
llama_kv_cache_init: layer 0: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 1: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 2: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 3: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 4: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 5: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 6: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 7: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 8: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 9: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 10: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 11: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 12: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 13: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 14: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 15: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 16: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 17: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 18: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 19: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 20: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 21: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 22: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 23: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 24: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 25: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 26: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 27: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: CUDA0 KV buffer size = 28.00 MiB
llama_init_from_model: KV self size = 28.00 MiB, K (f16): 14.00 MiB, V (f16): 14.00 MiB
llama_init_from_model: CUDA_Host output buffer size = 0.58 MiB
llama_init_from_model: CUDA0 compute buffer size = 304.00 MiB
llama_init_from_model: CUDA_Host compute buffer size = 8.01 MiB
llama_init_from_model: graph nodes = 986
llama_init_from_model: graph splits = 2
CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
Model metadata: {'general.name': 'Qwen2.5 Coder 7B Instruct GGUF', 'general.architecture': 'qwen2', 'general.type': 'model', 'general.basename': 'Qwen2.5-Coder', 'general.finetune': 'Instruct-GGUF', 'qwen2.block_count': '28', 'general.size_label': '7B', 'split.count': '0', 'qwen2.context_length': '131072', 'qwen2.embedding_length': '3584', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '151643', 'qwen2.feed_forward_length': '18944', 'qwen2.attention.head_count': '28', 'qwen2.attention.head_count_kv': '4', 'tokenizer.ggml.padding_token_id': '151643', 'qwen2.rope.freq_base': '1000000.000000', 'qwen2.attention.layer_norm_rms_epsilon': '0.000001', 'split.tensors.count': '339', 'tokenizer.ggml.eos_token_id': '151645', 'general.file_type': '15', 'tokenizer.ggml.model': 'gpt2', 'tokenizer.ggml.pre': 'qwen2', 'tokenizer.ggml.add_bos_token': 'false', 'tokenizer.chat_template': '{%- if tools %}\n {{- '<|im_start|>system\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within XML tags:\n" }}\n {%- for tool in tools %}\n {{- "\n" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- "\n\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{{\"name\": , \"arguments\": }}\n</tool_call><|im_end|>\n" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}\n {%- else %}\n {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}\n {%- elif message.role == "assistant" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\n<tool_call>\n{"name": "' }}\n {{- tool_call.name }}\n {{- '", "arguments": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\n' }}\n {%- elif message.role == "tool" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\n<tool_response>\n' }}\n {{- message.content }}\n {{- '\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}\n {{- '<|im_end|>\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\n' }}\n{%- endif %}\n', 'split.no': '0'}
Available chat formats from metadata: chat_template.default
Using gguf chat template: {%- if tools %}
{{- '<|im_start|>system\n' }}
{%- if messages[0]['role'] == 'system' %}
{{- messages[0]['content'] }}
{%- else %}
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
{%- endif %}
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within XML tags:\n" }}
{%- for tool in tools %}
{{- "\n" }}
{{- tool | tojson }}
{%- endfor %}
{{- "\n\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{{"name": , "arguments": }}\n</tool_call><|im_end|>\n" }}
{%- else %}
{%- if messages[0]['role'] == 'system' %}
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
{%- else %}
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- for message in messages %}
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
{%- elif message.role == "assistant" %}
{{- '<|im_start|>' + message.role }}
{%- if message.content %}
{{- '\n' + message.content }}
{%- endif %}
{%- for tool_call in message.tool_calls %}
{%- if tool_call.function is defined %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '\n<tool_call>\n{"name": "' }}
{{- tool_call.name }}
{{- '", "arguments": ' }}
{{- tool_call.arguments | tojson }}
{{- '}\n</tool_call>' }}
{%- endfor %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
{{- '<|im_start|>user' }}
{%- endif %}
{{- '\n<tool_response>\n' }}
{{- message.content }}
{{- '\n</tool_response>' }}
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n' }}
{%- endif %}
Using chat eos_token: <|im_end|>
Using chat bos_token: <|endoftext|>
llama_perf_context_print: load time = 113.31 ms
llama_perf_context_print: prompt eval time = 113.23 ms / 6 tokens ( 18.87 ms per token, 52.99 tokens per second)
llama_perf_context_print: eval time = 1126.94 ms / 99 runs ( 11.38 ms per token, 87.85 tokens per second)
llama_perf_context_print: total time = 1360.79 ms / 105 tokens
{'id': 'cmpl-6894c929-824e-4c60-a4f4-82dd32d7baa8', 'object': 'text_completion', 'created': 1740414543, 'model': 'E:\.lmstudio\models\Qwen\Qwen2.5-Coder-7B-Instruct-GGUF\qwen2.5-coder-7b-instruct-q4_k_m.gguf', 'choices': [{'text': " Can you help me with something? I'm trying to write a Python program that calculates the sum of all even numbers in a given list. Can you provide an example code snippet?\n\nCertainly! Here's an example code snippet in Python that calculates the sum of all even numbers in a list:\n\n```python\ndef sum_of_even_numbers(numbers):\n # Initialize the sum to 0\n sum = 0\n \n # Iterate through each number in the list\n for num in numbers:\n ", 'index': 0, 'logprobs': None, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 6, 'completion_tokens': 100, 'total_tokens': 106}}
请按任意键继续. . .
The text was updated successfully, but these errors were encountered:
(base) PS C:\WINDOWS\system32> conda activate CUDA124-py312
(CUDA124-py312) PS C:\WINDOWS\system32> $env:CUDA_TOOLKIT_ROOT_DIR="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.4"
(CUDA124-py312) PS C:\WINDOWS\system32> $env:CMAKE_GENERATOR_PLATFORM="x64"
(CUDA124-py312) PS C:\WINDOWS\system32> $env:FORCE_CMAKE="1"
(CUDA124-py312) PS C:\WINDOWS\system32> $env:CMAKE_ARGS="-DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=89"
(CUDA124-py312) PS C:\WINDOWS\system32> pip install llama-cpp-python --no-cache-dir --force-reinstall --upgrade
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple/, http://mirrors.aliyun.com/pypi/simple/
Collecting llama-cpp-python
Downloading http://mirrors.aliyun.com/pypi/packages/a6/38/7a47b1fb1d83eaddd86ca8ddaf20f141cbc019faf7b425283d8e5ef710e5/llama_cpp_python-0.3.7.tar.gz (66.7 MB)
---------------------------------------- 66.7/66.7 MB 10.9 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Installing backend dependencies ... done
Preparing metadata (pyproject.toml) ... done
Collecting typing-extensions>=4.5.0 (from llama-cpp-python)
Downloading http://mirrors.aliyun.com/pypi/packages/26/9f/ad63fc0248c5379346306f8668cda6e2e2e9c95e01216d2b8ffd9ff037d0/typing_extensions-4.12.2-py3-none-any.whl (37 kB)
Collecting numpy>=1.20.0 (from llama-cpp-python)
Downloading http://mirrors.aliyun.com/pypi/packages/42/6e/55580a538116d16ae7c9aa17d4edd56e83f42126cb1dfe7a684da7925d2c/numpy-2.2.3-cp312-cp312-win_amd64.whl (12.6 MB)
---------------------------------------- 12.6/12.6 MB 12.2 MB/s eta 0:00:00
Collecting diskcache>=5.6.1 (from llama-cpp-python)
Downloading http://mirrors.aliyun.com/pypi/packages/3f/27/4570e78fc0bf5ea0ca45eb1de3818a23787af9b390c0b0a0033a1b8236f9/diskcache-5.6.3-py3-none-any.whl (45 kB)
Collecting jinja2>=2.11.3 (from llama-cpp-python)
Downloading http://mirrors.aliyun.com/pypi/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl (134 kB)
Collecting MarkupSafe>=2.0 (from jinja2>=2.11.3->llama-cpp-python)
Downloading http://mirrors.aliyun.com/pypi/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl (15 kB)
Building wheels for collected packages: llama-cpp-python
Building wheel for llama-cpp-python (pyproject.toml) ... done
Created wheel for llama-cpp-python: filename=llama_cpp_python-0.3.7-cp312-cp312-win_amd64.whl size=93677980 sha256=57bf98eb04b27b2607a9d9327b85cf8fd47453ee5498c51a3dc0a99fe44db02f
Stored in directory: C:\Users\Administrator\AppData\Local\Temp\pip-ephem-wheel-cache-37xy15zb\wheels\ec\61\fc\cee068315610d77f6a99c0032a74e4c8cb21c1d6e281b45bb5
Successfully built llama-cpp-python
Installing collected packages: typing-extensions, numpy, MarkupSafe, diskcache, jinja2, llama-cpp-python
Attempting uninstall: typing-extensions
Found existing installation: typing_extensions 4.12.2
Uninstalling typing_extensions-4.12.2:
Successfully uninstalled typing_extensions-4.12.2
Attempting uninstall: numpy
Found existing installation: numpy 2.2.3
Uninstalling numpy-2.2.3:
Successfully uninstalled numpy-2.2.3
Attempting uninstall: MarkupSafe
Found existing installation: MarkupSafe 3.0.2
Uninstalling MarkupSafe-3.0.2:
Successfully uninstalled MarkupSafe-3.0.2
Attempting uninstall: diskcache
Found existing installation: diskcache 5.6.3
Uninstalling diskcache-5.6.3:
Successfully uninstalled diskcache-5.6.3
Attempting uninstall: jinja2
Found existing installation: Jinja2 3.1.5
Uninstalling Jinja2-3.1.5:
Successfully uninstalled Jinja2-3.1.5
Successfully installed MarkupSafe-3.0.2 diskcache-5.6.3 jinja2-3.1.5 llama-cpp-python-0.3.7 numpy-2.2.3 typing-extensions-4.12.2
(CUDA124-py312) PS C:\WINDOWS\system32> pip show llama-cpp-python
Name: llama_cpp_python
Version: 0.3.7
Summary: Python bindings for the llama.cpp library
Home-page: https://github.com/abetlen/llama-cpp-python
Author:
Author-email: Andrei Betlen abetlen@gmail.com
License: MIT
Location: C:\software\Minipy312\envs\CUDA124-py312\Lib\site-packages
Requires: diskcache, jinja2, numpy, typing-extensions
Required-by:
(CUDA124-py312) PS C:\WINDOWS\system32>
G:>conda.bat activate CUDA124-py312
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4070 SUPER, compute capability 8.9, VMM: yes
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4070 SUPER) - 11053 MiB free
llama_model_loader: loaded meta data with 29 key-value pairs and 339 tensors from E:.lmstudio\models\Qwen\Qwen2.5-Coder-7B-Instruct-GGUF\qwen2.5-coder-7b-instruct-q4_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2.5 Coder 7B Instruct GGUF
llama_model_loader: - kv 3: general.finetune str = Instruct-GGUF
llama_model_loader: - kv 4: general.basename str = Qwen2.5-Coder
llama_model_loader: - kv 5: general.size_label str = 7B
llama_model_loader: - kv 6: qwen2.block_count u32 = 28
llama_model_loader: - kv 7: qwen2.context_length u32 = 131072
llama_model_loader: - kv 8: qwen2.embedding_length u32 = 3584
llama_model_loader: - kv 9: qwen2.feed_forward_length u32 = 18944
llama_model_loader: - kv 10: qwen2.attention.head_count u32 = 28
llama_model_loader: - kv 11: qwen2.attention.head_count_kv u32 = 4
llama_model_loader: - kv 12: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 14: general.file_type u32 = 15
llama_model_loader: - kv 15: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 16: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,152064] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 19: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 22: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 24: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - kv 26: split.no u16 = 0
llama_model_loader: - kv 27: split.count u16 = 0
llama_model_loader: - kv 28: split.tensors.count i32 = 339
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type q4_K: 169 tensors
llama_model_loader: - type q6_K: 29 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 4.36 GiB (4.91 BPW)
init_tokenizer: initializing tokenizer for type 2
load: control token: 151661 '<|fim_suffix|>' is not marked as EOG
load: control token: 151649 '<|box_end|>' is not marked as EOG
load: control token: 151647 '<|object_ref_end|>' is not marked as EOG
load: control token: 151654 '<|vision_pad|>' is not marked as EOG
load: control token: 151659 '<|fim_prefix|>' is not marked as EOG
load: control token: 151648 '<|box_start|>' is not marked as EOG
load: control token: 151644 '<|im_start|>' is not marked as EOG
load: control token: 151646 '<|object_ref_start|>' is not marked as EOG
load: control token: 151650 '<|quad_start|>' is not marked as EOG
load: control token: 151651 '<|quad_end|>' is not marked as EOG
load: control token: 151652 '<|vision_start|>' is not marked as EOG
load: control token: 151653 '<|vision_end|>' is not marked as EOG
load: control token: 151655 '<|image_pad|>' is not marked as EOG
load: control token: 151656 '<|video_pad|>' is not marked as EOG
load: control token: 151660 '<|fim_middle|>' is not marked as EOG
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 3584
print_info: n_layer = 28
print_info: n_head = 28
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 7
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 18944
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 7B
print_info: model params = 7.62 B
print_info: general.name = Qwen2.5 Coder 7B Instruct GGUF
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 148848 'ÄĬ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: layer 0 assigned to device CUDA0
load_tensors: layer 1 assigned to device CUDA0
load_tensors: layer 2 assigned to device CUDA0
load_tensors: layer 3 assigned to device CUDA0
load_tensors: layer 4 assigned to device CUDA0
load_tensors: layer 5 assigned to device CUDA0
load_tensors: layer 6 assigned to device CUDA0
load_tensors: layer 7 assigned to device CUDA0
load_tensors: layer 8 assigned to device CUDA0
load_tensors: layer 9 assigned to device CUDA0
load_tensors: layer 10 assigned to device CUDA0
load_tensors: layer 11 assigned to device CUDA0
load_tensors: layer 12 assigned to device CUDA0
load_tensors: layer 13 assigned to device CUDA0
load_tensors: layer 14 assigned to device CUDA0
load_tensors: layer 15 assigned to device CUDA0
load_tensors: layer 16 assigned to device CUDA0
load_tensors: layer 17 assigned to device CUDA0
load_tensors: layer 18 assigned to device CUDA0
load_tensors: layer 19 assigned to device CUDA0
load_tensors: layer 20 assigned to device CUDA0
load_tensors: layer 21 assigned to device CUDA0
load_tensors: layer 22 assigned to device CUDA0
load_tensors: layer 23 assigned to device CUDA0
load_tensors: layer 24 assigned to device CUDA0
load_tensors: layer 25 assigned to device CUDA0
load_tensors: layer 26 assigned to device CUDA0
load_tensors: layer 27 assigned to device CUDA0
load_tensors: layer 28 assigned to device CUDA0
load_tensors: tensor 'token_embd.weight' (q4_K) (and 0 others) cannot be used with preferred buffer type CPU_AARCH64, using CPU instead
load_tensors: offloading 28 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 29/29 layers to GPU
load_tensors: CUDA0 model buffer size = 4168.09 MiB
load_tensors: CPU_Mapped model buffer size = 292.36 MiB
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 512
llama_init_from_model: n_ctx_per_seq = 512
llama_init_from_model: n_batch = 512
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 0
llama_init_from_model: freq_base = 1000000.0
llama_init_from_model: freq_scale = 1
llama_init_from_model: n_ctx_per_seq (512) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 512, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1
llama_kv_cache_init: layer 0: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 1: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 2: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 3: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 4: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 5: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 6: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 7: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 8: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 9: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 10: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 11: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 12: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 13: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 14: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 15: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 16: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 17: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 18: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 19: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 20: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 21: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 22: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 23: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 24: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 25: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 26: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: layer 27: n_embd_k_gqa = 512, n_embd_v_gqa = 512
llama_kv_cache_init: CUDA0 KV buffer size = 28.00 MiB
llama_init_from_model: KV self size = 28.00 MiB, K (f16): 14.00 MiB, V (f16): 14.00 MiB
llama_init_from_model: CUDA_Host output buffer size = 0.58 MiB
llama_init_from_model: CUDA0 compute buffer size = 304.00 MiB
llama_init_from_model: CUDA_Host compute buffer size = 8.01 MiB
llama_init_from_model: graph nodes = 986
llama_init_from_model: graph splits = 2
CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
Model metadata: {'general.name': 'Qwen2.5 Coder 7B Instruct GGUF', 'general.architecture': 'qwen2', 'general.type': 'model', 'general.basename': 'Qwen2.5-Coder', 'general.finetune': 'Instruct-GGUF', 'qwen2.block_count': '28', 'general.size_label': '7B', 'split.count': '0', 'qwen2.context_length': '131072', 'qwen2.embedding_length': '3584', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '151643', 'qwen2.feed_forward_length': '18944', 'qwen2.attention.head_count': '28', 'qwen2.attention.head_count_kv': '4', 'tokenizer.ggml.padding_token_id': '151643', 'qwen2.rope.freq_base': '1000000.000000', 'qwen2.attention.layer_norm_rms_epsilon': '0.000001', 'split.tensors.count': '339', 'tokenizer.ggml.eos_token_id': '151645', 'general.file_type': '15', 'tokenizer.ggml.model': 'gpt2', 'tokenizer.ggml.pre': 'qwen2', 'tokenizer.ggml.add_bos_token': 'false', 'tokenizer.chat_template': '{%- if tools %}\n {{- '<|im_start|>system\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within XML tags:\n" }}\n {%- for tool in tools %}\n {{- "\n" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- "\n\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{{\"name\": , \"arguments\": }}\n</tool_call><|im_end|>\n" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}\n {%- else %}\n {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}\n {%- elif message.role == "assistant" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\n<tool_call>\n{"name": "' }}\n {{- tool_call.name }}\n {{- '", "arguments": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\n' }}\n {%- elif message.role == "tool" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\n<tool_response>\n' }}\n {{- message.content }}\n {{- '\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}\n {{- '<|im_end|>\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\n' }}\n{%- endif %}\n', 'split.no': '0'}
Available chat formats from metadata: chat_template.default
Using gguf chat template: {%- if tools %}
{{- '<|im_start|>system\n' }}
{%- if messages[0]['role'] == 'system' %}
{{- messages[0]['content'] }}
{%- else %}
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
{%- endif %}
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within XML tags:\n" }}
{%- for tool in tools %}
{{- "\n" }}
{{- tool | tojson }}
{%- endfor %}
{{- "\n\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{{"name": , "arguments": }}\n</tool_call><|im_end|>\n" }}
{%- else %}
{%- if messages[0]['role'] == 'system' %}
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
{%- else %}
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- for message in messages %}
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
{%- elif message.role == "assistant" %}
{{- '<|im_start|>' + message.role }}
{%- if message.content %}
{{- '\n' + message.content }}
{%- endif %}
{%- for tool_call in message.tool_calls %}
{%- if tool_call.function is defined %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '\n<tool_call>\n{"name": "' }}
{{- tool_call.name }}
{{- '", "arguments": ' }}
{{- tool_call.arguments | tojson }}
{{- '}\n</tool_call>' }}
{%- endfor %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
{{- '<|im_start|>user' }}
{%- endif %}
{{- '\n<tool_response>\n' }}
{{- message.content }}
{{- '\n</tool_response>' }}
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n' }}
{%- endif %}
Using chat eos_token: <|im_end|>
Using chat bos_token: <|endoftext|>
llama_perf_context_print: load time = 113.31 ms
llama_perf_context_print: prompt eval time = 113.23 ms / 6 tokens ( 18.87 ms per token, 52.99 tokens per second)
llama_perf_context_print: eval time = 1126.94 ms / 99 runs ( 11.38 ms per token, 87.85 tokens per second)
llama_perf_context_print: total time = 1360.79 ms / 105 tokens
{'id': 'cmpl-6894c929-824e-4c60-a4f4-82dd32d7baa8', 'object': 'text_completion', 'created': 1740414543, 'model': 'E:\.lmstudio\models\Qwen\Qwen2.5-Coder-7B-Instruct-GGUF\qwen2.5-coder-7b-instruct-q4_k_m.gguf', 'choices': [{'text': " Can you help me with something? I'm trying to write a Python program that calculates the sum of all even numbers in a given list. Can you provide an example code snippet?\n\nCertainly! Here's an example code snippet in Python that calculates the sum of all even numbers in a list:\n\n```python\ndef sum_of_even_numbers(numbers):\n # Initialize the sum to 0\n sum = 0\n \n # Iterate through each number in the list\n for num in numbers:\n ", 'index': 0, 'logprobs': None, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 6, 'completion_tokens': 100, 'total_tokens': 106}}
请按任意键继续. . .
The text was updated successfully, but these errors were encountered: