Skip to content

Enable detokenizing special tokens #1596

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Aug 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions llama_cpp/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -578,6 +578,8 @@ def tokenize(

Args:
text: The utf-8 encoded string to tokenize.
add_bos: Whether to add a beginning of sequence token.
special: Whether to tokenize special tokens.

Raises:
RuntimeError: If the tokenization failed.
Expand All @@ -588,18 +590,19 @@ def tokenize(
return self.tokenizer_.tokenize(text, add_bos, special)

def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
self, tokens: List[int], prev_tokens: Optional[List[int]] = None, special: bool = False
) -> bytes:
"""Detokenize a list of tokens.

Args:
tokens: The list of tokens to detokenize.
prev_tokens: The list of previous tokens. Offset mapping will be performed if provided
prev_tokens: The list of previous tokens. Offset mapping will be performed if provided.
special: Whether to detokenize special tokens.

Returns:
The detokenized string.
"""
return self.tokenizer_.detokenize(tokens, prev_tokens=prev_tokens)
return self.tokenizer_.detokenize(tokens, prev_tokens=prev_tokens, special=special)

def set_cache(self, cache: Optional[BaseLlamaCache]):
"""Set the cache.
Expand Down
25 changes: 14 additions & 11 deletions llama_cpp/llama_tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,20 +19,22 @@ def tokenize(
"""Tokenize the text into tokens.

Args:
text: The text to tokenize.
text: The utf-8 encoded string to tokenize.
add_bos: Whether to add a beginning of sequence token.
special: Whether to tokenize text literally or as special tokens."""
special: Whether to tokenize special tokens.
"""
raise NotImplementedError

@abc.abstractmethod
def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
self, tokens: List[int], prev_tokens: Optional[List[int]] = None, special: bool = False
) -> bytes:
"""Detokenize the tokens into text.

Args:
tokens: The tokens to detokenize.
prev_tokens: If tokens is a continuation of a previous sequence, the previous tokens.
tokens: The list of tokens to detokenize.
prev_tokens: The list of previous tokens. Offset mapping will be performed if provided.
special: Whether to detokenize special tokens.
"""
raise NotImplementedError

Expand All @@ -47,9 +49,9 @@ def tokenize(
return self._model.tokenize(text, add_bos=add_bos, special=special)

def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
self, tokens: List[int], prev_tokens: Optional[List[int]] = None, special: bool = False
) -> bytes:
return self._model.detokenize(tokens)
return self._model.detokenize(tokens, special=special)

def encode(
self, text: str, add_bos: bool = True, special: bool = True
Expand Down Expand Up @@ -78,18 +80,19 @@ def tokenize(
)

def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
self, tokens: List[int], prev_tokens: Optional[List[int]] = None, special: bool = False
) -> bytes:
skip_special_tokens = not special
if prev_tokens is not None:
text = self.hf_tokenizer.decode(prev_tokens + tokens).encode(
text = self.hf_tokenizer.decode(prev_tokens + tokens, skip_special_tokens=skip_special_tokens).encode(
"utf-8", errors="ignore"
)
prev_text = self.hf_tokenizer.decode(prev_tokens).encode(
prev_text = self.hf_tokenizer.decode(prev_tokens, skip_special_tokens=skip_special_tokens).encode(
"utf-8", errors="ignore"
)
return text[len(prev_text) :]
else:
return self.hf_tokenizer.decode(tokens).encode("utf-8", errors="ignore")
return self.hf_tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens).encode("utf-8", errors="ignore")

@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str) -> "LlamaHFTokenizer":
Expand Down