-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrackingParams.py
352 lines (328 loc) · 17 KB
/
TrackingParams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
__author__ = 'Tommy'
import cv2
import numpy as np
from MultiProposalTracker import MultiProposalTracker
from ParallelTracker import ParallelTracker
from BakerMatthewsICTracker import BakerMatthewsICTracker as BMICTracker
from CascadeTracker import CascadeTracker
from ESMTracker import ESMTracker
from L1Tracker import L1Tracker
flann_found = True
cython_found = True
xvision_found = True
mtf_found = True
try:
from NNTracker import NNTracker
except ImportError:
print 'FLANN not found'
flann_found = False
try:
from cython_trackers.BMICTracker import BMICTracker as BMICTracker_c
from cython_trackers.CascadeTracker import CascadeTracker as CascadeTracker_c
from cython_trackers.ESMTracker import ESMTracker as ESMTracker_c
from cython_trackers.CTracker import CTracker as RKLTracker
from cython_trackers.PFTracker import PFTracker as PFTracker
from cython_trackers.DESMTracker import DESMTracker as DESMTracker
from cython_trackers.DLKTracker import DLKTracker as DLKTracker
except ImportError:
print 'Cython modules not found'
cython_found = False
if cython_found and flann_found:
from cython_trackers.NNTracker import NNTracker as NNTracker_c
from cython_trackers.DNNTracker import DNNTracker as DNNTracker
import cython_trackers.TurnkeyTrackers as cy_tt
try:
from XVSSDTracker import XVSSDTracker
except ImportError:
print 'Xvision not found'
xvision_found = False
try:
from mtfTracker import mtfTracker
except ImportError as err:
print 'MTF not found: {:s}'.format(err)
mtf_found = False
from Homography import random_homography
class TrackingParams:
def __init__(self, type, params):
self.type = type
self.params = {}
self.tracker = None
self.update = lambda: None
self.validate = lambda: True
# print 'params.keys=\n', params.keys()
self.mmodels = {
8: 1,
6: 4,
4: 7,
3: 5,
2: 6}
# initialize parameters
for key in params.keys():
vals = params[key]
self.params[key] = Param(name=key, id=vals['id'], val=vals['default'], type=vals['type'],
list=vals['list'])
self.sorted_params = self.getSortedParams()
for param in self.sorted_params:
self.params[param.name] = param
if flann_found and type == 'nn':
def getNNTracker(feature, current_params=self.params):
version = current_params['version'].val
if version == 'python':
print 'Using python version'
return NNTracker(
no_of_samples=current_params['no_of_samples'].val,
no_of_iterations=current_params['no_of_iterations'].val,
res=(current_params['resolution_x'].val,
current_params['resolution_y'].val),
use_scv=current_params['enable_scv'].val,
multi_approach=current_params['multi_approach'].val,
warp_generator=lambda: random_homography(current_params['nn_sigma_d'].val,
current_params['nn_sigma_t'].val),
feature=feature)
elif cython_found and version == 'cython':
print 'Using cython version'
# NNTracker(nn_iters, nn_samples, res[0], res[1], 0.06, 0.04, use_scv)
return NNTracker_c(
current_params['no_of_iterations'].val,
current_params['no_of_samples'].val,
current_params['resolution_x'].val,
current_params['resolution_y'].val,
current_params['sigma_t'].val,
current_params['sigma_d'].val,
current_params['enable_scv'].val
)
self.update = getNNTracker
elif type == 'esm':
def getESMTracker(feature, current_params=self.params):
version = current_params['version'].val
if version == 'python':
print 'Using python version'
return ESMTracker(
max_iterations=current_params['max_iterations'].val,
threshold=current_params['threshold'].val,
err_thresh=current_params['err_thresh'].val,
res=(current_params['resolution_x'].val,
current_params['resolution_y'].val),
use_err_thresh=current_params['enable_err_thresh'].val,
use_scv=current_params['enable_scv'].val,
multi_approach=current_params['multi_approach'].val,
feature=feature)
elif cython_found and version == 'cython':
print 'Using cython version'
# NNTracker(nn_iters, nn_samples, res[0], res[1], 0.06, 0.04, use_scv)
return ESMTracker_c(
current_params['max_iterations'].val,
current_params['threshold'].val,
current_params['resolution_x'].val,
current_params['resolution_y'].val,
current_params['enable_scv'].val,
current_params['write_log'].val,
current_params['multi_approach'].val
)
self.update = getESMTracker
elif type == 'ict':
def getICTracker(feature, current_params=self.params):
version = current_params['version'].val
if version == 'python':
print 'Using python version'
return BMICTracker(
max_iterations=current_params['max_iterations'].val,
threshold=current_params['threshold'].val,
res=(current_params['resolution_x'].val,
current_params['resolution_y'].val),
use_scv=current_params['enable_scv'].val,
multi_approach=current_params['multi_approach'].val,
feature=feature)
elif cython_found and version == 'cython':
print 'Using cython version'
# NNTracker(nn_iters, nn_samples, res[0], res[1], 0.06, 0.04, use_scv)
return BMICTracker_c(
current_params['max_iterations'].val,
current_params['threshold'].val,
current_params['resolution_x'].val,
current_params['resolution_y'].val,
current_params['enable_scv'].val)
self.update = getICTracker
elif type == 'cascade':
def initTrackers(feature, current_params):
trackers = []
for i in xrange(len(current_params['trackers'].val)):
tracker_type = current_params['trackers'].val[i]
if tracker_type == 'none':
continue
tracker_params = current_params['parameters'].val[i]
if tracker_params is None:
param_list = current_params['parameters'].list
tracker_params = TrackingParams(tracker_type, param_list[tracker_type])
trackers.append(tracker_params.update(feature, tracker_params.params))
return trackers
def getCascadeTracker(feature, current_params=self.params):
version = current_params['version'].val
if version == 'python':
print 'Using python version'
return CascadeTracker(
initTrackers(feature, current_params), feature=feature)
elif cython_found and version == 'cython':
print 'Using cython version'
# NNTracker(nn_iters, nn_samples, res[0], res[1], 0.06, 0.04, use_scv)
return CascadeTracker_c(
initTrackers(feature, current_params))
self.update = getCascadeTracker
elif type == 'l1':
# pass
self.update = lambda feature, current_params=self.params: L1Tracker(
no_of_samples=current_params['no_of_samples'].val,
angle_threshold=current_params['angle_threshold'].val,
res=[current_params['resolution_x'].val,
current_params['resolution_y'].val],
no_of_templates=current_params['no_of_templates'].val,
alpha=current_params['alpha'].val,
use_scv=current_params['enable_scv'].val,
multi_approach=current_params['multi_approach'].val,
feature=feature)
elif xvision_found and type == 'xv_ssd':
self.update = lambda feature, current_params=self.params: XVSSDTracker(
steps_per_frame=current_params['steps_per_frame'].val,
multi_approach=current_params['multi_approach'].val,
enable_scv=current_params['enable_scv'].val,
direct_capture=current_params['direct_capture'].val,
stepper=current_params['stepper'].val,
show_xv_window=current_params['show_xv_window'].val,
use_pyramidal_stepper=current_params['use_pyramidal_stepper'].val,
no_of_levels=current_params['no_of_levels'].val,
scale=current_params['scale'].val)
elif type == 'desm':
self.update = lambda feature, current_params=self.params: DESMTracker(
current_params['max_iterations'].val,
current_params['threshold'].val,
current_params['resolution_x'].val,
current_params['resolution_y'].val,
current_params['enable_scv'].val,
self.mmodels[current_params['dof'].val])
elif type == 'dnn':
self.update = lambda feature, current_params=self.params: DNNTracker(
current_params['max_iterations'].val,
current_params['no_of_samples'].val,
current_params['resolution_x'].val,
current_params['resolution_y'].val,
current_params['sigma_t'].val,
current_params['sigma_d'].val,
current_params['enable_scv'].val,
self.mmodels[current_params['dof'].val])
elif type == 'dlk':
self.update = lambda feature, current_params=self.params: DLKTracker(
current_params['max_iterations'].val,
current_params['threshold'].val,
current_params['resolution_x'].val,
current_params['resolution_y'].val,
current_params['enable_scv'].val,
self.mmodels[current_params['dof'].val])
elif type == 'pf':
self.update = lambda feature, current_params=self.params: PFTracker(
current_params['no_of_samples'].val,
current_params['resolution_x'].val,
current_params['resolution_y'].val,
current_params['enable_scv'].val,
self.mmodels[current_params['dof'].val])
elif type == 'rkl':
self.update = lambda feature, current_params=self.params: RKLTracker(
current_params['max_iterations'].val,
current_params['threshold'].val,
current_params['resolution_x'].val,
current_params['resolution_y'].val,
current_params['enable_scv'].val)
elif flann_found and type == 'nnic':
def getNNICTracker(feature, current_params=self.params):
version = current_params['version'].val
trackers = []
if version == 'python':
print 'Using python version'
trackers.append(
NNTracker(
no_of_samples=current_params['no_of_samples'].val,
no_of_iterations=current_params['nn_no_of_iterations'].val,
res=(current_params['nn_resolution_x'].val,
current_params['nn_resolution_y'].val),
use_scv=current_params['nn_enable_scv'].val,
multi_approach=current_params['multi_approach'].val,
warp_generator=lambda: random_homography(current_params['nn_sigma_d'].val,
current_params['nn_sigma_t'].val),
feature=feature,
)
)
trackers.append(
BMICTracker(
max_iterations=current_params['ic_max_iterations'].val,
threshold=current_params['ic_threshold'].val,
res=(current_params['ic_resolution_x'].val,
current_params['ic_resolution_y'].val),
use_scv=current_params['ic_enable_scv'].val,
multi_approach=current_params['multi_approach'].val,
feature=feature
)
)
return CascadeTracker(trackers, feature=feature)
elif cython_found and version == 'cython':
print 'Using cython version'
# NNTracker(nn_iters, nn_samples, res[0], res[1], 0.06, 0.04, use_scv)
trackers.append(
NNTracker_c(
current_params['nn_no_of_iterations'].val,
current_params['no_of_samples'].val,
current_params['nn_resolution_x'].val,
current_params['nn_resolution_y'].val,
current_params['nn_sigma_t'].val,
current_params['nn_sigma_d'].val,
current_params['nn_enable_scv'].val
)
)
trackers.append(
BMICTracker_c(
current_params['ic_max_iterations'].val,
current_params['ic_threshold'].val,
current_params['ic_resolution_x'].val,
current_params['ic_resolution_y'].val,
current_params['ic_enable_scv'].val
)
)
return CascadeTracker_c(trackers)
self.update = getNNICTracker
elif flann_found and type == 'tt_dnn_bmic':
self.update = lambda feature, current_params=self.params: cy_tt.make_dnn_bmic(
use_scv=current_params['enable_scv'].val,
res=(current_params['resolution_x'].val, current_params['resolution_y'].val),
nn_iters=current_params['nn_max_iterations'].val,
nn_samples=current_params['no_of_samples'].val,
bmic_iters=current_params['ic_max_iterations'].val,
MModel=current_params['MModel'].val,
gnn=current_params['enable_gnn'].val,
exp=current_params['enable_exp'].val
)
elif flann_found and type == 'tt_nn_bmic':
self.update = lambda feature, current_params=self.params: cy_tt.make_nn_bmic(
use_scv=current_params['enable_scv'].val,
res=(current_params['resolution_x'].val, current_params['resolution_y'].val),
nn_iters=current_params['nn_max_iterations'].val,
nn_samples=current_params['no_of_samples'].val,
bmic_iters=current_params['ic_max_iterations'].val
)
elif mtf_found and type == 'mtf':
self.update = lambda feature, current_params=self.params: mtfTracker(
current_params['config_root_dir'].val)
else:
self.init_success = False
print "Invalid tracker:", type
def getSortedParams(self):
return sorted(self.params.values(), key=lambda k: k.id)
def printParamValue(self):
print 'Initialized', self.type.capitalize(), 'tracker with:'
# print self.type, "filter:"
for key in self.params.keys():
print key, "=", self.params[key].val
class Param:
def __init__(self, name, id, val, type, list=None):
self.id = id
self.name = name
self.val = val
self.type = type
self.list = list