-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTODO
89 lines (72 loc) · 3.98 KB
/
TODO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
Main:
Generic:
☐ Delete unnecessary CN2 implementation
✔ arrivare a due implementazioni uguali @done(24-04-03 11:05)
✔ build_cn2 as orange_cn2(simple selector version) @done(24-03-14 20:39)
✔ build_base_cn2 as orange_cn2(simple selector version) @done(24-03-16 12:00)
☐ new section in docu
✔ MLJ interface for cn2 @done(24-04-29 18:23)
☐ Metrics
✔ Entropy @done(24-04-29 18:23)
✔ Laplace @done(24-04-29 18:23)
✔ entropyMDL @done(24-04-29 18:23)
☐ Rule validation
☐ LRS
☐ Weighted relative accuracy
☐ SyntaxSearch
# Formule di una certa grammatica e di un certo alfabeto si generan così
# a = ExplicitAlphabet(@atoms p q r s)
# g = SoleLogics.CompleteFlatGrammar(a, [∧, ∨])
# formulas(g; maxdepth = 2)
# formulas(g; maxdepth = 100, nformulas = 100)
☐ Define DecisionSet and corresponding apply method
Utility:
✔ Implementing instances(PropositionalLogiset) @done(24-03-04 17:11)
✔ Gestione errore in istanziazione PropositionalLogiset{DataFrame}(SubDataFrame) @done(24-04-13 04:08)
# già scritta soluzione temporanea
✔ add alphabet parameter @done(24-04-03 11:06)
✔ check empty row table in ProposiionlLogiset costruction @done(24-04-03 17:35)
✔ map from integer to original class names @done(24-04-10 16:31)
☐ semplificazione LmCF o LmDF
# scalarminimizer
✔ BoundedScalarCond -> UnivariateScalarCondion @done(24-04-10 16:31)
Testing:
✔ 100% accuracy when testing on training data ? @done(24-03-01 03:02)
☐ Only real attributes
☐ Biopsy
☐ Ionosphere
☐ Mobile
☐ Yeast
☐ Abalone
Future:
✔ Differenziare caso attributi discreti/categoriali
MLJ-Interface:
✔ Constructor with keyword arguments @done(24-04-12 13:32)
✔ fit @done(24-06-01 13:59)
# parlare con gio di CategoricalArrays
✔ predict @done(24-06-01 13:59)
✔ clean! @done(24-06-01 13:59)
# https://juliaai.github.io/MLJModelInterface.jl/dev/quick_start_guide/
✔ MMI.metadata_pkg.MMI.metadata_pkg @done(24-06-01 13:59)
Last:
☐ In RandSearch, when calling randformula, should you give it the right atompicking_mode and subalphabets_weights; right?
✔ :uniform working ? @done(24-06-01 18:59)
✔ :twostep working ? @done(24-06-01 18:59)
☐ subalphabets_weights working ?
# atompicker = ((rng,alph)->randatom(rng,alph; atompicking_mode = ..., subalphabets_weights = ...))
☐ was :uniform or :weighted working better...?
✔ And which one are we using now? @done(24-06-02 11:56)
☐ Uniform
✔ only one expression between "evaluation function" and "quality evaluator" and "loss_function" @done(24-06-01 15:05)
or maybe "loss function".
☐ TODO Remove Italian writings (@Italian)
✔ Rename SequentialCoveringLearner; "learner" is a bit old-fashioned in my opinion. Maybe something like "ExtendedSequentialCovering?" @done(24-06-01 15:05)
☐ add documentation for SequentialCoveringLearner
✔ Gather all the good code in "dev" branch, and delete unnecessary branches, edo, edo-memo, edo-dec-set, etc. @done(24-06-01 15:05)
# https://stackoverflow.com/questions/1307114/how-can-i-archive-git-branches/42232899#42232899
☐ keep edo ?
✔ edo-memo @done(24-06-01 15:05)
✔ edo-dec-set @done(24-06-01 15:05)
Post Experiments Patches:
☐ Unify names for maxinfogain
☐ In RandSearch default alpha and max_infogain_ratio to Nothing (after tuning phase)