-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_analysis_multiple_files.m
489 lines (360 loc) · 20.2 KB
/
data_analysis_multiple_files.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
clc
clear variables
close all
format long
set(groot,'DefaultAxesFontSize', 24)
set(groot,'DefaultLineLineWidth',2.5)
%% sensor orientation
% to define sensor orientation, enter from keyboard what versor of the
% right-handed triad is the given force parallel to.
% (1 --> X; 2 --> Y; 3--> Z)
% default values in case of repeated experiment (for user's agility only)
sensor_orientation = struct;
promptdrag = "Enter drag direction\n";
sensor_orientation.drag_dir = (input(promptdrag, 's'));
if sensor_orientation.drag_dir == ""
sensor_orientation.drag_dir = 2; % enter default value here
fprintf('-> going for default value: drag_dir = %d\n\n', sensor_orientation.drag_dir);
end
promptlift = "Enter lift direction\n";
sensor_orientation.lift_dir = (input(promptlift, 's'));
if sensor_orientation.lift_dir == ""
sensor_orientation.lift_dir = 1; % enter default value here
fprintf('-> going for default value: lift_dir = %d\n\n', sensor_orientation.lift_dir);
end
promptlat = "Enter lat direction\n";
sensor_orientation.lat_dir = (input(promptlat, 's'));
if sensor_orientation.lat_dir == ""
sensor_orientation.lat_dir = 3; % enter default value here
fprintf('-> going for default value: lat_dir = %d\n\n', sensor_orientation.lat_dir);
end
sens_subt_drag = 0.120;
sens_subt_lift = 0.193;
%% data folder names acquisition
prompt = "Enter soft wing data directory's name\n";
MyFolderSoft = (input(prompt, "s"));
% default data in case of repeated experiment (for user's agility only)
if MyFolderSoft == ""
MyFolderSoft = "soft_data_05072023"; % enter default value here
fprintf('-> going for default value: data directory "%s"\n\n', MyFolderSoft);
end
fprintf('\n')
prompt = "Enter rigid wing data directory's name\n";
MyFolderHard = (input(prompt, "s"));
% default data in case of repeated experiment (for user's agility only)
if MyFolderHard == ""
MyFolderHard = "hard_data_12072023"; % enter default value here
fprintf('-> going for default value: data directory "%s"\n\n', MyFolderHard);
end
%if MyFolderDouble == ""
MyFolderDouble = "soft_data_12072023_25ms"; % enter default value here
% fprintf('-> going for default value: data directory "%s"\n\n', MyFolderHard);
%end
% prompt = "Enter chord length data file name\n";
% MyFileChord = (input(prompt, "s"));
% default data in case of repeated experiment (for user's agility only)
% if MyFileChord == ""
% MyFileChord = "chord_length"; % enter default value here
% fprintf('-> going for default value: data directory "%s"\n', MyFileChord);
% end
MyFolderInfoSoft = dir(MyFolderSoft); % directory information and file names for soft data
MyFolderInfoHard = dir(MyFolderHard); % directory information and file names for hard data
MyFolderInfoDouble = dir(MyFolderDouble); % directory information and file names for hard data
%% variables initiation
exp_value_soft = struct;
exp_value_soft.f_avg = zeros(length(MyFolderInfoSoft), 3);
exp_value_soft.f_std = zeros(length(MyFolderInfoSoft), 3);
exp_value_soft.f_ratio = zeros(length(MyFolderInfoSoft), 1);
exp_value_soft.f_std_ratio = zeros(length(MyFolderInfoSoft), 1);
exp_value_soft.t_avg = zeros(length(MyFolderInfoSoft), 3);
exp_value_soft.t_std = zeros(length(MyFolderInfoSoft), 3);
exp_value_soft.aoa = zeros(length(MyFolderInfoSoft), 1);
exp_value_soft.vel = zeros(length(MyFolderInfoSoft), 1);
exp_value_soft.inflation = zeros(length(MyFolderInfoSoft), 1);
exp_value_soft.ci = zeros(length(MyFolderInfoSoft), 4);
%exp_value_soft.chord = zeros(length(MyFolderInfo), 1); % chord length file must have ordered data to reflect that of force value data
exp_value_hard = struct;
exp_value_hard.f_avg = zeros(length(MyFolderInfoHard), 3);
exp_value_hard.f_std = zeros(length(MyFolderInfoHard), 3);
exp_value_hard.f_ratio = zeros(length(MyFolderInfoHard), 1);
exp_value_hard.f_std_ratio = zeros(length(MyFolderInfoHard), 1);
exp_value_hard.t_std = zeros(length(MyFolderInfoHard), 3);
exp_value_hard.aoa = zeros(length(MyFolderInfoHard), 1);
exp_value_hard.vel = zeros(length(MyFolderInfoHard), 1);
exp_value_hard.ci = zeros(length(MyFolderInfoHard), 4);
%exp_value_hard.chord = zeros(length(MyFolderInfoHard), 1); % chord length file must have ordered data to reflect that of force value data
exp_value_double = struct;
exp_value_double.f_avg = zeros(length(MyFolderInfoDouble), 3);
exp_value_double.f_std = zeros(length(MyFolderInfoDouble), 3);
exp_value_double.f_ratio = zeros(length(MyFolderInfoDouble), 1);
exp_value_double.f_std_ratio = zeros(length(MyFolderInfoDouble), 1);
exp_value_double.t_std = zeros(length(MyFolderInfoDouble), 3);
exp_value_double.aoa = zeros(length(MyFolderInfoDouble), 1);
exp_value_double.vel = zeros(length(MyFolderInfoDouble), 1);
exp_value_double.inflation = zeros(length(MyFolderInfoDouble), 1);
exp_value_double.dir = zeros(length(MyFolderInfoDouble), 1);
exp_value_double.ci = zeros(length(MyFolderInfoDouble), 4);
%exp_value_hard.chord = zeros(length(MyFolderInfoDouble), 1); % chord length file must have ordered data to reflect that of force value data
z_score = 1.96;
fprintf('\nvariables allocated successfully\n');
%% soft data read
for k = 1:length(MyFolderInfoSoft)
if length(MyFolderInfoSoft(k).name) < 4
continue
end
if MyFolderInfoSoft(k).name(1:4) ~= "soft" % skip files that are not soft
continue
end
exp_table = readtable(MyFolderSoft + "/" + MyFolderInfoSoft(k).name, 'Delimiter', ', ', "Range", "D:I");
%chord_table = readtable("./" + MyFileChord, 'Delimiter', ', ', "Range", "A:A");
exp_value_soft.f_avg(k, :) = mean(exp_table{1:end, 1:3}); % average force vector for all of wing's config.
exp_value_soft.f_median(k, :) = median(exp_table{1:end, 1:3}); % median force vector for all of wing's config.
exp_value_soft.f_std(k, :) = std(exp_table{1:end, 1:3}); % standard dev for each force component of every wing config.
exp_value_soft.f_ratio(k, 1) = mean(exp_table{1:end, sensor_orientation.lift_dir} ./ exp_table{1:end, sensor_orientation.drag_dir});
exp_value_soft.f_std_ratio(k, 1) = std(exp_table{1:end, sensor_orientation.lift_dir} ./ exp_table{1:end, sensor_orientation.drag_dir});
exp_value_soft.ci(k, 1:3) = z_score * exp_value_soft.f_std(k, :) ./ (sqrt(length(exp_value_soft.f_std(:, 1))) * ones(1, 3));
exp_value_soft.ci(k, 4) = z_score * exp_value_soft.f_std_ratio(k) / sqrt(length(exp_value_soft.f_std_ratio(:, 1)));
% exp_value_soft.t_avg(k, :) = mean(exp_table{1:end, 4:6}); % average torque vector for all of wing's config.
% exp_value_soft.t_std(k, :) = std(exp_table{1:end, 4:6}); % standard deviation for each torque component of every wing config.
exp_value_soft.wingtype(k, 1) = string(MyFolderInfoSoft(k).name(1:4)); % wing type.
if MyFolderInfoSoft(k).name(6:9) == "zero" % wing angle of attack discrimination (char and int) --> lines 58 to 66
exp_value_soft.aoa(k) = 0;
elseif MyFolderInfoSoft(k).name(6:9) == "-005"
exp_value_soft.aoa(k) = -5;
elseif MyFolderInfoSoft(k).name(6:9) == "neg5"
exp_value_soft.aoa(k) = -5;
elseif MyFolderInfoSoft(k).name(6:9) == "pos5"
exp_value_soft.aoa(k) = 5;
elseif MyFolderInfoSoft(k).name(6:9) == "0007"
exp_value_soft.aoa(k) = 7.5;
elseif MyFolderInfoSoft(k).name(6:9) == "pos7"
exp_value_hard.aoa(k) = 7.5;
elseif MyFolderInfoSoft(k).name(6:9) == "0012"
exp_value_soft.aoa(k) = 12.5;
else
exp_value_soft.aoa(k) = str2double(MyFolderInfoSoft(k).name(8:9));
end
% if MyFolderInfo(k).name(6:9) == "0010" && MyFolderInfo(k).name(14:15) == "40"
% %fourier_transform_signal(exp_table, sensor_orientation.lift_dir);
% fourier(exp_table, sensor_orientation.lift_dir);
% end
% if MyFolderInfoSoft(k).name(6:9) == "0010" && MyFolderInfoSoft(k).name(14:15) == "30"
% %fourier_transform_signal(exp_table, sensor_orientation.lift_dir);
% fourier(exp_table, sensor_orientation.lift_dir, str2double(MyFolderInfo(k).name(6:9)), str2double(MyFolderInfo(k).name(14:15)));
% end
exp_value_soft.vel(k) = str2double(MyFolderInfoSoft(k).name(14:15)) / 100; % flow velocity (m/s)
exp_value_soft.inflation(k) = str2double(MyFolderInfoSoft(k).name(19:21)); % wing inflation
% if MyFolderInfoSoft(k).name(6:9) == "0015" && MyFolderInfoSoft(k).name(14:15) == "30" && str2double(MyFolderInfoSoft(k).name(19:21)) == 0
% %fourier_transform_signal(exp_table, sensor_orientation.lift_dir);
% fourier(exp_table, sensor_orientation.lift_dir, 'soft');
% end
end
% fourier_transform_signal(exp_value_soft, 10, 0.4, sensor_orientation.lift_dir);
remove = (exp_value_soft.f_avg(:, 1) == 0);
fields = fieldnames(exp_value_soft);
for k = 1:numel(fields)
exp_value_soft.(fields{k})(remove, :) = [];
end
clear exp_table remove fields
fprintf('%d soft data files read successfully\n', length(exp_value_soft.aoa));
%% hard data read
for k = 1:length(MyFolderInfoHard)
if length(MyFolderInfoHard(k).name) < 4
continue
end
if MyFolderInfoHard(k).name(1:4) ~= "hard" % skip files that are not hard
continue
end
exp_table_hard = readtable(MyFolderHard + "/" + MyFolderInfoHard(k).name, 'Delimiter', ', ', "Range", "D:I");
%chord_table = readtable("./" + MyFileChord, 'Delimiter', ', ', "Range", "A:A");
exp_value_hard.f_avg(k, :) = mean(exp_table_hard{1:end, 1:3}); % average force vector for all of wing's config.
exp_value_hard.f_median(k, :) = median(exp_table_hard{1:end, 1:3}); % average force vector for all of wing's config.
exp_value_hard.f_std(k, :) = std(exp_table_hard{1:end, 1:3}); % standard dev for each force component of every wing config.
exp_value_hard.f_ratio(k, 1) = mean(exp_table_hard{1:end, sensor_orientation.lift_dir} ./ exp_table_hard{1:end, sensor_orientation.drag_dir});
exp_value_hard.f_std_ratio(k, 1) = std(exp_table_hard{1:end, sensor_orientation.lift_dir} ./ exp_table_hard{1:end, sensor_orientation.drag_dir});
exp_value_hard.ci(k, 1:3) = z_score * exp_value_hard.f_std(k, :) ./ (sqrt(length(exp_value_hard.f_std(:, 1))) * ones(1, 3));
exp_value_hard.ci(k, 4) = z_score * exp_value_hard.f_std_ratio(k) / sqrt(length(exp_value_hard.f_std_ratio(:, 1)));
%exp_value_hard.t_avg(k, :) = mean(exp_table_hard{1:end, 4:6}); % average torque vector for all of wing's config.
%exp_value_hard.t_std(k, :) = std(exp_table_hard{1:end, 4:6}); % standard deviation for each torque component of every wing config.
exp_value_hard.wingtype(k, 1) = string(MyFolderInfoHard(k).name(1:4)); % wing type.
if MyFolderInfoHard(k).name(6:9) == "zero" % wing angle of attack discrimination (char and int) --> lines 58 to 66
exp_value_hard.aoa(k) = 0;
elseif MyFolderInfoHard(k).name(6:9) == "-005"
exp_value_hard.aoa(k) = -5;
elseif MyFolderInfoHard(k).name(6:9) == "neg5"
exp_value_hard.aoa(k) = -5;
elseif MyFolderInfoHard(k).name(6:9) == "pos5"
exp_value_hard.aoa(k) = 5;
elseif MyFolderInfoHard(k).name(6:9) == "0007"
exp_value_hard.aoa(k) = 7.5;
elseif MyFolderInfoHard(k).name(6:9) == "pos7"
exp_value_hard.aoa(k) = 7.5;
elseif MyFolderInfoHard(k).name(6:9) == "0012"
exp_value_hard.aoa(k) = 12.5;
else
exp_value_hard.aoa(k) = str2double(MyFolderInfoHard(k).name(8:9));
end
% if MyFolderInfo(k).name(6:9) == "0010" && MyFolderInfo(k).name(14:15) == "40"
% %fourier_transform_signal(exp_table, sensor_orientation.lift_dir);
% fourier(exp_table, sensor_orientation.lift_dir);
% end
% if MyFolderInfo(k).name(6:9) == "0025" && MyFolderInfo(k).name(14:15) == "30"
% %fourier_transform_signal(exp_table, sensor_orientation.lift_dir);
% fourier(exp_table, sensor_orientation.lift_dir);
% end
%
% if MyFolderInfo(k).name(6:9) == "0010" && MyFolderInfo(k).name(14:15) == "30"
% %fourier_transform_signal(exp_table, sensor_orientation.lift_dir);
% fourier(exp_table, sensor_orientation.lift_dir, str2double(MyFolderInfo(k).name(6:9)), str2double(MyFolderInfo(k).name(14:15)));
% end
%
% if MyFolderInfoHard(k).name(6:9) == "0015" && MyFolderInfoHard(k).name(14:15) == "30"
% %fourier_transform_signal(exp_table, sensor_orientation.lift_dir);
% fourier(exp_table_hard, sensor_orientation.lift_dir, 'rigid');
% end
exp_value_hard.vel(k) = str2double(MyFolderInfoHard(k).name(14:15)) / 100; % flow velocity (m/s)
end
% fourier_transform_signal(exp_value_hard, 10, 0.4, sensor_orientation.lift_dir);
remove = (exp_value_hard.f_avg(:, 1) == 0);
fields = fieldnames(exp_value_hard);
for k = 1:numel(fields)
exp_value_hard.(fields{k})(remove, :) = [];
end
clear exp_table_hard
fprintf('%d hard data files read successfully\n', length(exp_value_hard.aoa));
%% double data read
for k = 1:length(MyFolderInfoDouble)
if length(MyFolderInfoDouble(k).name) < 4
continue
end
if MyFolderInfoDouble(k).name(1:4) ~= "soft" % skip files that are not soft
continue
end
%
% if k == 88
% continue
% end
%
if k == 82
continue
end
exp_table_double = readtable(MyFolderDouble + "/" + MyFolderInfoDouble(k).name, 'Delimiter', ', ', "Range", "D:I");
%chord_table = readtable("./" + MyFileChord, 'Delimiter', ', ', "Range", "A:A");
exp_value_double.f_avg(k, :) = mean(exp_table_double{1:end, 1:3}); % average force vector for all of wing's config.
exp_value_double.f_median(k, :) = median(exp_table_double{1:end, 1:3}); % average force vector for all of wing's config.
exp_value_double.f_std(k, :) = std(exp_table_double{1:end, 1:3}); % standard dev for each force component of every wing config.
exp_value_double.f_ratio(k, 1) = mean(exp_table_double{1:end, sensor_orientation.lift_dir} ./ exp_table_double{1:end, sensor_orientation.drag_dir});
exp_value_double.f_std_ratio(k, 1) = std(exp_table_double{1:end, sensor_orientation.lift_dir} ./ exp_table_double{1:end, sensor_orientation.drag_dir});
exp_value_double.ci(k, 1:3) = z_score * exp_value_double.f_std(k, :) ./ (sqrt(length(exp_value_double.f_std(:, 1))) * ones(1, 3));
exp_value_double.ci(k, 4) = z_score * exp_value_double.f_std_ratio(k) / sqrt(length(exp_value_double.f_std_ratio(:, 1)));
% exp_value_double.t_avg(k, :) = mean(exp_table_double{1:end, 4:6}); % average torque vector for all of wing's config.
% exp_value_double.t_std(k, :) = std(exp_table_double{1:end, 4:6}); % standard deviation for each torque component of every wing config.
exp_value_double.wingtype(k, 1) = string(MyFolderInfoDouble(k).name(1:4)); % wing type.
if MyFolderInfoDouble(k).name(6:9) == "zero" % wing angle of attack discrimination (char and int) --> lines 58 to 66
exp_value_double.aoa(k) = 0;
elseif MyFolderInfoDouble(k).name(6:9) == "0000" % correction for error in experiment
exp_value_double.aoa(k) = -5;
elseif MyFolderInfoDouble(k).name(6:9) == "-005"
exp_value_double.aoa(k) = -5;
elseif MyFolderInfoDouble(k).name(6:9) == "neg5"
exp_value_double.aoa(k) = -5;
elseif MyFolderInfoDouble(k).name(6:9) == "pos5"
exp_value_double.aoa(k) = 5;
elseif MyFolderInfoDouble(k).name(6:9) == "0007"
exp_value_double.aoa(k) = 7.5;
elseif MyFolderInfoDouble(k).name(6:9) == "pos7"
exp_value_double.aoa(k) = 7.5;
elseif MyFolderInfoDouble(k).name(6:9) == "0012"
exp_value_double.aoa(k) = 12.5;
else
exp_value_double.aoa(k) = str2double(MyFolderInfoDouble(k).name(8:9));
end
exp_value_double.vel(k) = str2double(MyFolderInfoDouble(k).name(14:15)) / 100; % flow velocity (m/s)
exp_value_double.inflation(k) = str2double(MyFolderInfoDouble(k).name(20:22)); % wing inflation
if MyFolderInfoDouble(k).name(19) == "p" % wing inflation direction discrimination
exp_value_double.dir(k) = 1;
else
exp_value_double.dir(k) = 0;
end
end
remove = (exp_value_double.f_avg(:, 1) == 0);
fields = fieldnames(exp_value_double);
for k = 1:numel(fields)
exp_value_double.(fields{k})(remove, :) = [];
end
clear exp_table_double
fprintf('%d double data files read successfully\n', length(exp_value_double.aoa));
fprintf('\ndata read completed\n\n');
%% soft data sorting
T = struct2table(exp_value_soft); % convert the struct array to a table
sortedT = sortrows(T, 'aoa'); % sort the table by 'aoa'
exp_value_soft = table2struct(sortedT,'ToScalar',true); % convert the table back to the struct array
clear T sortedT
fprintf('soft data sorting completed\n')
%% hard data sorting
C = struct2table(exp_value_hard); % convert the struct array to a table
sortedC = sortrows(C, 'aoa'); % sort the table by 'aoa'
exp_value_hard = table2struct(sortedC,'ToScalar',true); % convert the table back to the struct array
clear C sortedC
fprintf('hard data sorting completed\n')
%% double data sorting
B = struct2table(exp_value_double); % convert the struct array to a table
sortedB = sortrows(B, 'aoa'); % sort the table by 'aoa'
exp_value_double = table2struct(sortedB,'ToScalar',true); % convert the table back to the struct array
clear B sortedB
fprintf('double data sorting completed\n')
%% data processing
L = 1;
% given a reference frame, Sf(x_s, y_s, z_s) represents the force sensing point,
% whereas St(x_t, y_t, z_t) represents the torque sensing point.
% given a reference frame, T(x_t, y_t, z_t) represents the transposition
% point of forces and momenta
% d(x, y, z) = (dx; dy; dz) vector defining distance between force and moment sensing
% points and transposition point (one vector because force and momenta sensing
% points coincide)
% CL = L / (dynamic pressure * wing_surface)
% CD = D / (dynamic pressure * wing_surface)
x_s = 1;
y_s = 0;
z_s = L / 2;
x_t = 0;
y_t = 0;
z_t = 0;
dx = x_t - x_s;
dy = y_t - y_s;
dz = z_t - z_s;
d = [dx; dy; dz];
semi_wingspan_length = 0.368; % m; exclunding yellow cantilever spanning out from the support. Otherwise tot = 0.378 + 0.02575 [m]
S = semi_wingspan_length .* [0.160; 0.160; 0.160; 0.160; 0.160]; % m^2; reference surface for aerodynamic coefficients calculation is the projection of the semi-wing's area on the XZ plane
chord = 0.160+0.07; % m, measured visually from neutral configuration videos
rho = 998; % kg / m^3 density of water @ 20 C
dyn_viscosity = 10^(-3); % Pa * s
kin_viscosity = dyn_viscosity / rho; % m^2 * s
% exp_value_double(:, sensor_orientation.lift_dir) = exp_value_double(:, sensor_orientation.lift_dir) - sens_subt_lift;
% exp_value_double(:, sensor_orientation.drag_dir) = exp_value_double(:, sensor_orientation.drag_dir) - sens_subt_drag;
% tor_transposed_soft = zeros(length(exp_value_soft.t_avg), 3);
% tor_transposed_soft(1:end, 1:3) = exp_value_soft.t_avg(1:end, 1:3) + exp_value_soft.f_avg(1:end, 1:3) * d;
%
% tor_transposed_hard = zeros(length(exp_value_hard.t_avg), 3);
% tor_transposed_hard(1:end, 1:3) = exp_value_hard.t_avg(1:end, 1:3) + exp_value_hard.f_avg(1:end, 1:3) * d;
fprintf('data processing completed\n\n')
%% data visualization init.
format short
sel_speed = [.15, .20, .25, .30, .40];
%sel_speed = [.15, .20, .30, .40];
%sel_speed = [.25];
sel_inflation = [0, 30, 60, 90, 120];
sel_inflation_double = [0, 15, 30, 45, 60, 90, 120];
dyn_pressure = 0.5 * rho .* sel_speed .^ 2; % vector, calculation of dynamic pressure
div = dyn_pressure .* S; % matrix leading to aero coefficients. Rows: inflations. Column: speeds.
% if exp_value_soft.wingtype(1, 1:4) == "hard"
% plot_hard_wing(exp_value_soft.wingtype(1, 1:4), exp_value_soft, sel_speed, div, chord, kin_viscosity, sensor_orientation);
% end
%plot_soft_wing(exp_value_soft.wingtype(1, 1:4), exp_value_soft, sel_speed, sel_inflation, div, chord, kin_viscosity, sensor_orientation);
%plot_soft_wing(exp_value_soft.wingtype(1), exp_value_soft, sel_speed, sel_inflation, div, chord, kin_viscosity, sensor_orientation);
plot_soft_hard_wing("soft_hard", exp_value_soft, exp_value_hard, exp_value_double, sel_speed, sel_inflation, sel_inflation_double, div, chord, kin_viscosity, sensor_orientation);
% plot_hard_wing(exp_value_hard.wingtype(1, 1:4), exp_value_hard, sel_speed, div, chord, kin_viscosity, sensor_orientation);
% if exp_value_soft.wingtype(1, 1:4) == "soft"
% plot_soft_wing(exp_value_soft.wingtype(1, 1:4), exp_value_soft, sel_speed, sel_inflation, div, chord, kin_viscosity, sensor_orientation);
% end
% close all