A containerized pipeline for training and deploying spyware detection models.
- 🐳 Production-ready Docker container
- 🧩 Modular component architecture
- 📊 Comprehensive model evaluation
- 🔐 Secure non-root execution
- 📦 Optimized multi-stage build
- Docker 20.10+
- Python 3.9+
-
Build the image:
docker build -t spyware-detector .
-
Run training:
docker run --rm \ -v $(pwd)/data:/app/data \ -v $(pwd)/models:/app/models \ -v $(pwd)/release:/app/release \ spyware-detector
-
Setup environment:
python -m venv venv source venv/bin/activate pip install -r requirements.txt
-
Run pipeline:
python src/main.py
Edit YAML files in config/
to customize:
# Example config/components/model_trainer.yaml
params:
model_type: "random_forest"
hyperparams:
n_estimators: [100, 200]
max_depth: [10, 20]
.
├── config/ # Pipeline configuration
├── data/ # Training data
├── models/ # Trained models
├── release/ # Deployment packages
├── src/ # Application code
└── tests/ # Unit tests
The included GitHub workflow:
- Builds Docker image on push
- Runs training pipeline
- Packages artifacts
- Creates GitHub release
- Non-root container user
- Minimal runtime image
- Regular dependency updates
- Isolated build environment
MIT License - See LICENSE for details.