-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetuning_age_main.py
executable file
·147 lines (119 loc) · 5.09 KB
/
finetuning_age_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import sys
from pathlib import Path
import methylgpt.modules.scGPT.scgpt as scgpt
current_directory = Path(__file__).parent.absolute()
from sklearn import preprocessing
import pandas as pd
import argparse
import json
import yaml
import torch
import lightning as pl
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch import seed_everything
from finetuning_age_datasets import CollatableVocab, Age_Dataset
from finetuning_age_models import methyGPT_Age_Model
seed_everything(42, workers=True)
def train (args):
# Define model args
with open("/home/A.Y/project/MethylGPT_clean/pretrained_models/args.json", 'r') as file:
pretrain_args = json.load(file)
# Define training args
with open("tutorials_age_prediction/train_methyGPT.yml", 'r') as add_file:
add_args = yaml.safe_load(add_file)
model_args = {**pretrain_args, **add_args}
model_args["version"]= f'Finetune-methylGPT-AltumAgeMLMPrediction-mask{model_args["mask_ratio"]}-dataset-{model_args["dataset"]}-basedon-Nov29-12-01'
model_args["weights_name"] = model_args["version"] + '_{epoch:02d}-{step:02d}-{valid_medae:.4f}-{valid_mae:.4f}-{valid_s_r:.4f}-{test_medae:.4f}-{test_mae:.4f}-{test_s_r:.4f}'
model_args["mask_ratio"] = args.mask_ratio*0.01
model_args["mask_seed"] = args.mask_seed
model_args["dropout"] = 0
# Prepare data
methyGPT_vocab = CollatableVocab(model_args)
train_file = model_args["train_file"]
valid_flie = model_args["valid_file"]
test_file = model_args["test_file"]
train_df = pd.read_parquet(train_file)
valid_df = pd.read_parquet(valid_flie)
test_df = pd.read_parquet(test_file)
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))
scaler.fit(train_df["age"].to_numpy().reshape(-1, 1))
train_dataset = Age_Dataset(methyGPT_vocab, train_df, scaler)
valid_dataset = Age_Dataset(methyGPT_vocab, valid_df, scaler)
test_dataset = Age_Dataset(methyGPT_vocab, test_df, scaler)
train_loader: torch.utils.data.DataLoader = torch.utils.data.DataLoader(
train_dataset,
batch_size=model_args["train_batch_size"],
collate_fn=train_dataset.collater,
shuffle=True,
drop_last=True,
num_workers=4,
)
valid_loader: torch.utils.data.DataLoader = torch.utils.data.DataLoader(
valid_dataset,
collate_fn=valid_dataset.collater,
batch_size=model_args["valid_batch_size"],
num_workers=4,
)
test_loader: torch.utils.data.DataLoader = torch.utils.data.DataLoader(
test_dataset,
collate_fn=test_dataset.collater,
batch_size=model_args["valid_batch_size"],
num_workers=4,
)
# Init model
model = methyGPT_Age_Model(
model_args=model_args,
vocab=methyGPT_vocab,
scaler=scaler,
)
if model_args["mode"] == "train":
checkpoint_callback = pl.pytorch.callbacks.ModelCheckpoint(
dirpath=model_args["weights_save_path"],
filename=model_args["weights_name"],
monitor="valid_medae",
mode="min",
save_top_k=1,
)
lr_logger = pl.pytorch.callbacks.LearningRateMonitor()
if model_args["wandb"]:
wandb_save_path = os.path.join(str(current_directory) + "/wandb", model_args["version"])
os.makedirs(wandb_save_path, exist_ok=True)
wandb_logger = WandbLogger(project=model_args["project"],
name=model_args["version"],
save_dir=wandb_save_path,
)
else:
wandb_logger = None
# train model
trainer = pl.Trainer(
default_root_dir=current_directory,
logger=wandb_logger,
devices=model_args["gpus"],
accelerator="gpu",
callbacks=[lr_logger, checkpoint_callback],
gradient_clip_val=model_args["gradient_clip_val"],
max_epochs=model_args["max_epochs"],
strategy="ddp_find_unused_parameters_true",
log_every_n_steps=model_args["log_every_n_steps"],
precision="bf16-true",
)
trainer.fit(model, train_loader, [valid_loader, test_loader])
elif model_args["mode"] == "valid":
model.load_state_dict(torch.load(model_args["valid_ckpt_path"], map_location="cpu")['state_dict'], strict=True)
model.eval()
# validate model
trainer = pl.Trainer(
default_root_dir=current_directory,
devices=1,
accelerator="gpu",
strategy="ddp_find_unused_parameters_true",
precision="bf16-true",
)
trainer.validate(model, [valid_loader, test_loader])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--mask_ratio", type=float, default=0)
parser.add_argument("--mask_seed", type=int, default=42)
args = parser.parse_args()
train(args)