-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
executable file
·215 lines (155 loc) · 7.25 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from keras import Input, Model
from keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from keras.layers import Conv2D, MaxPooling2D, Dropout, ReLU, UpSampling2D
from keras.layers.merge import concatenate
from keras.optimizers import Adam
from keras_preprocessing.image import ImageDataGenerator
from decomposer import *
from util.config import *
SEED = 4
WINDOW_SIZE = 304
BATCH_SIZE = 8
STEPS_PER_EPOCH = 500
EPOCHS = 50
def convolve(input, filters, kernel_size=3):
conv = Conv2D(filters=filters, kernel_size=kernel_size, padding='same', kernel_initializer='normal')(input)
#conv = BatchNormalization()(conv)
conv = ReLU()(conv)
conv = Conv2D(filters=filters, kernel_size=kernel_size, padding='same', kernel_initializer='normal')(conv)
#conv = BatchNormalization()(conv)
conv = ReLU()(conv)
return conv
def transpose_convolve(input, filters):
up = UpSampling2D(size=2)(input)
up = Conv2D(filters=filters, kernel_size=3, padding='same', kernel_initializer="normal")(up)
return ReLU()(up)
#return Conv2DTranspose(filters=filters, strides=2, kernel_size=3, padding='same')(input)
def pool(input):
return MaxPooling2D(pool_size=2)(input)
class UNetModel(ModelBase):
#
# dense_prediction - If True, 9 predictions per image are done, as explained in the report
# - If False, only 4 predictions are done
# augment_colors - If True, also brightness and contrast factors are augmented.
#
def __init__(self, dense_prediction=True, augment_colors=True):
self.model = None
self.dense_prediction = dense_prediction
self.augment_colors = augment_colors
def initialize(self):
inputs = Input((WINDOW_SIZE, WINDOW_SIZE, 3))
base_filters = 32
unet_depth = 4
down_socket = []
dropouts = [0, 0, 0, 0]
kernel_sizes = [5, 3, 3, 3]
# Downsampling construction
down = inputs
for i in range(unet_depth):
conv = convolve(down, base_filters, kernel_size=kernel_sizes[i])
if dropouts[i] > 0: conv = Dropout(dropouts[i])(conv)
down = pool(conv)
down_socket.append(conv)
base_filters *= 2
# Bottom Layers
deconv = convolve(down, base_filters)
#deconv = Dropout(0.2)(deconv)
for i in reversed(range(unet_depth)):
base_filters //= 2
up = transpose_convolve(deconv, base_filters)
merge = concatenate([down_socket[i], up], axis=3)
deconv = convolve(merge, base_filters)
output = Conv2D(1, 1, activation='sigmoid')(deconv)
self.model = Model(inputs=inputs, outputs=output)
def load(self, filename):
self.model.load_weights(filename)
def save(self, filename):
self.model.save_weights(filename)
def train(self, Y, X):
Y = Y.reshape((-1, 400, 400, 1))
self.model.summary()
opt = Adam()
#opt = SGD()
self.model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
callbacks = [
ReduceLROnPlateau(monitor='accuracy', min_delta=0.0001, patience=5, verbose=1, factor=0.5),
EarlyStopping(monitor='accuracy', min_delta=0.0001, patience=11, verbose=1),
ModelCheckpoint(filepath='saves/checkpoints/cp-{epoch}.h5',
save_weights_only=True,
monitor='accuracy')
]
def datagen(X, Y):
datagen = ImageDataGenerator(rotation_range=360.,
horizontal_flip=True,
vertical_flip=True,
zoom_range=0.2,
fill_mode='reflect')
Xgen = datagen.flow(X, batch_size=BATCH_SIZE, seed=SEED)
Ygen = datagen.flow(Y, batch_size=BATCH_SIZE, seed=SEED)
for x, y in zip(Xgen, Ygen):
yield x, y
def random_cropper(generator):
while 1:
X_batch = np.empty((BATCH_SIZE, WINDOW_SIZE, WINDOW_SIZE, 3))
Y_batch = np.empty((BATCH_SIZE, WINDOW_SIZE, WINDOW_SIZE, 1))
X_batch_gen, Y_batch_gen = next(generator)
for i in range(X_batch_gen.shape[0]):
cur_img, cur_lbl = X_batch_gen[i], Y_batch_gen[i]
window_center = (np.random.randint(WINDOW_SIZE // 2, cur_img.shape[0] - WINDOW_SIZE // 2),
np.random.randint(WINDOW_SIZE // 2, cur_img.shape[1] - WINDOW_SIZE // 2))
X_sample = cur_img[
window_center[0] - WINDOW_SIZE // 2: window_center[0] + WINDOW_SIZE // 2,
window_center[1] - WINDOW_SIZE // 2: window_center[1] + WINDOW_SIZE // 2
]
Y_sample = cur_lbl[
window_center[0] - WINDOW_SIZE // 2: window_center[0] + WINDOW_SIZE // 2,
window_center[1] - WINDOW_SIZE // 2: window_center[1] + WINDOW_SIZE // 2
]
if self.augment_colors:
contrast_factor = 1 + (np.random.randint(0, 100) / 100)
brightness_factor = 1 + (np.random.randint(0, 100) / 100)
X_sample = np.clip(X_sample * brightness_factor, 0, 1)
X_sample = np.clip(0.5 + contrast_factor * (X_sample - 0.5), 0, 1)
X_batch[i] = X_sample
Y_batch[i] = Y_sample
yield (X_batch, Y_batch)
self.model.fit_generator(
random_cropper(datagen(X, Y)),
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
verbose=2,
callbacks=callbacks
)
def classify(self, X):
Z = np.empty((X.shape[0], X.shape[1], X.shape[2], 1))
for i in range(X.shape[0]):
Z[i] = self.segment_image(X[i])
return Z.reshape((X.shape[0], X.shape[1], X.shape[2]))
def segment_image(self, X):
fragments = []
w = X.shape[0]
h = X.shape[1]
WS = WINDOW_SIZE
fragments.append(X[:WS, :WS])
fragments.append(X[:WS, -WS:])
fragments.append(X[-WS:, :WS])
fragments.append(X[-WS:, -WS:])
if self.dense_prediction:
fragments.append(X[w//2-WS//2: w//2+WS//2, h//2-WS//2:h//2+WS//2])
fragments.append(X[w//2-WS//2: w//2+WS//2, :WS])
fragments.append(X[w//2-WS//2: w//2+WS//2, -WS:])
fragments.append(X[:WS, h//2-WS//2:h//2+WS//2])
fragments.append(X[-WS:, h//2-WS//2:h//2+WS//2])
Y = self.model.predict(np.array(fragments))
Z = np.empty((w, h, 1))
Z[-WS:, -WS:] = Y[3]
Z[-WS:, :WS] = Y[2]
Z[:WS, -WS:] = Y[1]
Z[:WS, :WS] = Y[0]
if self.dense_prediction:
Z[w//2-100: w//2+100, :WS] = Y[5][WS//2-100: WS//2+100, :WS]
Z[w//2-100: w//2+100, -WS:] = Y[6][WS//2-100: WS//2+100, -WS:]
Z[:WS, h//2-100: h//2+100] = Y[7][:WS, WS//2-100: WS//2+100]
Z[-WS:, h//2-100: h//2+100] = Y[8][-WS:, WS//2-100: WS//2+100]
Z[w//2-100: w//2+100, h//2-100: h//2+100] = Y[4][WS//2-100: WS//2+100, WS//2-100: WS//2+100]
return Z