-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathinference.py
81 lines (74 loc) · 2.32 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (C) 2019-2021 Alibaba Group Holding Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http:#www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#! /usr/bin/env python3
from halo import halo
from halo import odla
from pathlib import Path
import sys
import logging
from logging import StreamHandler, Formatter
import os
class Inference:
def __init__(
self,
model_file,
input_shapes,
output_names,
device,
batch,
format,
qps,
debug,
log_level,
):
self.debug = debug
logging.getLogger("halo").setLevel(log_level)
self.logger = logging.getLogger(__name__)
self.model_file = model_file
self.input_shapes = input_shapes
self.output_names = output_names
if not format:
suffixes = {
".onnx": "ONNX",
".pb": "TENSORFLOW",
".tflite": "TFLITE",
".caffemodel": "CAFFE",
}
suffixes.setdefault("INVALID")
suffix = Path(model_file).suffix
format = suffixes[suffix]
self.format = format
self.device = device
self.batch = batch
self.qps = qps
self.model = None
self.so_file = None
def __del__(self):
del self.model
def Initialize(self):
self.logger.info(f"Begin initialization;{self.model_file}")
self.so_file = "/usr/local/lib/libvodla.so"
self.model = odla.ODLAModel(self.so_file)
self.model.Load(
self.model_file,
self.input_shapes,
self.output_names,
self.format,
self.batch,
self.qps)
self.logger.info("Done initialization")
def Run(self, data):
if self.model is None:
self.Initialize()
return self.model.Execute(data, self.model_file, self.batch)