-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathodla_pipeline.h
229 lines (213 loc) · 7.55 KB
/
odla_pipeline.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
//===- odla_pipeline.h
//------------------------------------------------------===//
//
// Copyright (C) 2019-2020 Alibaba Group Holding Limited.
// Copyright (c) 2020 Graphcore Ltd. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#ifndef ODLA_PIPELINE_H_
#define ODLA_PIPELINE_H_
#include <ODLA/odla.h>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <mutex>
#include <popart/stepio.hpp>
#include <queue>
#include <thread>
#include "ODLA/odla_common.h"
#include "common.h"
#include "odla_popart.h"
void pipeline_loop(odla_computation comp);
class Queue {
public:
virtual void init(std::size_t capacity) = 0;
virtual void put(odla_context ctx) = 0;
virtual odla_context get_input_context() = 0;
virtual odla_context get_ctx_by_tensor(const popart::TensorId& id) = 0;
virtual odla_context get_output_context() = 0;
virtual void pop_input(odla_context ctx) = 0;
virtual void pop_output(odla_context ctx) = 0;
virtual std::size_t size() = 0;
};
class ContextQueues : public Queue {
private:
odla_context* buffer_;
std::size_t capacity_;
std::uint32_t head_;
std::uint32_t tail_;
std::uint32_t wait_;
std::map<popart::TensorId, std::uint32_t> tensor_to_idx_;
std::mutex batch_wait_mutex_;
std::condition_variable batch_wait_cv_;
std::mutex queue_mutex_; // lock the read & write
public:
ContextQueues() : head_(0), tail_(0), wait_(0){};
~ContextQueues() {
if (buffer_) delete[] buffer_;
}
void init(std::size_t capacity);
void put(odla_context ctx) final;
odla_context get_input_context() final;
odla_context get_ctx_by_tensor(const popart::TensorId& id) final;
odla_context get_output_context() final;
void pop_input(odla_context ctx) final;
void pop_output(odla_context ctx) final;
std::size_t size() final { return (tail_ - wait_ + capacity_) % capacity_; }
};
class LockFreeQueue : public Queue {
private:
std::atomic<odla_context>* buffer_;
std::size_t capacity_;
std::uint32_t head_;
std::atomic<uint32_t> tail_;
std::uint32_t wait_;
std::map<popart::TensorId, std::uint32_t> tensor_to_idx_;
std::mutex batch_wait_mutex_;
std::condition_variable batch_wait_cv_;
public:
LockFreeQueue();
~LockFreeQueue() {
if (buffer_) delete[] buffer_;
}
void init(std::size_t capacity);
void put(odla_context ctx) final;
odla_context get_input_context() final;
odla_context get_ctx_by_tensor(const popart::TensorId& id) final;
odla_context get_output_context() final;
void pop_input(odla_context ctx) final;
void pop_output(odla_context ctx) final;
std::size_t size() final {
return (tail_.load() - wait_ + capacity_) % capacity_;
}
};
class QManager {
private:
Queue* queue_;
odla_status status_;
QManager() : queue_(nullptr), status_(ODLA_SUCCESS) {}
~QManager() {}
std::mutex create_mutex_;
static QManager* instance_;
public:
void createQ(std::string queueType);
void deleteQ();
inline Queue* getQ() { return queue_; }
inline void set_status(odla_status status) { status_ = status; }
inline odla_status get_status() { return status_; }
static inline QManager* instance() { return instance_; }
};
struct _odla_pipeline_context : public _odla_context {
_odla_pipeline_context(odla_computation c)
: _odla_context(c), visited(0), written(0), got_output(false) {}
std::mutex context_mutex;
std::condition_variable context_cv;
std::set<popart::TensorId>
tensors_visited; // This is the tensor visited by callback
std::set<popart::TensorId>
tensors_written; // Record the output tensor written by callback
int visited;
int written;
bool got_output;
std::chrono::time_point<std::chrono::steady_clock> start;
std::chrono::time_point<std::chrono::steady_clock> end;
inline void wait() override {
while (!got_output) { // wait forever for the output
if (ODLA_SUCCESS != QManager::instance()->get_status())
break; // stop wait if we got exception status
std::unique_lock<std::mutex> lock(context_mutex);
context_cv.wait_for(lock, std::chrono::milliseconds(100));
}
got_output = false; // reset the flag incase context reused.
}
inline void notify() override {
std::unique_lock<std::mutex> lock(context_mutex);
got_output = true;
context_cv.notify_one();
}
inline popart::IArray* get_data_by_tensor_id(popart::TensorId id) override {
visited++;
return &(*(inputs[id]));
}
inline popart::IArray* write_data_by_tensor_id(popart::TensorId id) override {
if (written == 0) {
end = std::chrono::steady_clock::now();
std::chrono::duration<float, std::milli> elapsed_ms = end - start;
popart::logging::info("ONE_REQUEST for ctx: {} took: {} ms", this,
elapsed_ms.count());
}
written++;
return &(*(outputs[id]));
}
inline bool all_tensors_visited() override {
if (inputs.size() != comp->input_values.size()) {
popart::logging::err(
"ctx {} inputs.size() is {}, does not match graph inputs size {}",
this, inputs.size(), comp->input_values.size());
throw std::runtime_error(
"input size of context did not match the graph inputs size.");
}
if (visited == inputs.size()) {
start = std::chrono::steady_clock::now();
return true;
}
return false;
}
inline bool all_tensors_written() override {
if (outputs.size() != comp->output_values.size()) {
popart::logging::err(
"ctx {} outputs.size() is {}, does not match graph outputs size {}",
this, outputs.size(), comp->output_values.size());
throw std::runtime_error(
"output size of context did not match the graph outputs size.");
}
if (written == outputs.size()) {
return true;
}
return false;
}
inline void clear_visited_and_written() override {
visited = 0;
written = 0;
}
};
struct _odla_pipeline_empty_context : public _odla_pipeline_context {
odla_context shared_data = nullptr;
_odla_pipeline_empty_context(odla_computation c)
: _odla_pipeline_context(c) {}
inline void wait() override {}
inline void notify() override {}
inline bool deletable() override { return true; }
inline popart::IArray* get_data_by_tensor_id(popart::TensorId id) override {
if (!shared_data) return nullptr;
visited++;
return shared_data->get_data_by_tensor_id(id);
}
inline popart::IArray* write_data_by_tensor_id(popart::TensorId id) override {
if (!shared_data) return nullptr;
written++;
return shared_data->write_data_by_tensor_id(id);
}
inline bool all_tensors_visited() override {
return (visited == shared_data->inputs.size());
}
inline bool all_tensors_written() override {
return (written == shared_data->outputs.size());
}
};
extern popart::StepIOCallback::InputCallback input_callback;
extern popart::StepIOCallback::InputCompleteCallback input_complete_callback;
extern popart::StepIOCallback::OutputCallback output_callback;
extern popart::StepIOCallback::OutputCompleteCallback output_complete_callback;
#endif // ODLA_PIPELINE_H_